




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、中考数学常考的几何题定理公式总结初中几何公式定理:线1、同角或等角的余角相等2、过一点有且只有一条直线和直线垂直3、过两点有且只有一条直线4、两点之间线段最短5、同角或等角的补角相等6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行8、假如两条直线都和第三条直线平行,这两条直线也互相平行9、定理 线段垂直平分线上的点和这条线段两个端点的间隔 相等10、逆定理 和一条线段两个端点间隔 相等的点,在这条线段的垂直平分线上11、线段的垂直平分线可看作和线段两端点间隔 相等的所有点的集合12、定理1 关于某条直线对称的两个图形是全等形13
2、、定理 2 假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线14、定理3 两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上15、逆定理 假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称初中几何公式定理:角16、同位角相等,两直线平行17、内错角相等,两直线平行18、同旁内角互补,两直线平行19、两直线平行,同位角相等20、两直线平行,内错角相等21、两直线平行,同旁内角互补22、定理1 在角的平分线上的点到这个角的两边的间隔 相等23、定理2 到一个角的两边的间隔 一样的点,在这个角的平分线上24、角的平分线是到角的两边间隔
3、相等的所有点的集合初中几何公式定理:三角形25、定理 三角形两边的和大于第三边26、推论 三角形两边的差小于第三边27、三角形内角和定理 三角形三个内角的和等于180°28、推论1 直角三角形的两个锐角互余29、推论2 三角形的一个外角等于和它不相邻的两个内角的和30、推论3 三角形的一个外角大于任何一个和它不相邻的内角31、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c32、勾股定理的逆定理 假如三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式定理:等腰、直角三角形33、等腰三角形的性质定理 等腰三角形的两个底角相等34、
4、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边35、等腰三角形的顶角平分线、底边上的中线和高互相重合36、推论3 等边三角形的各角都相等,并且每一个角都等于60°37、等腰三角形的断定定理 假如一个三角形有两个角相等,那么这两个角所对的边也相等等角对等边38、推论1 三个角都相等的三角形是等边三角形39、推论 2 有一个角等于60°的等腰三角形是等边三角形40、在直角三角形中,假如一个锐角等于30°那么它所对的直角边等于斜边的一半41、直角三角形斜边上的中线等于斜边上的一半初中几何公式定理:相似、全等三角形42、定理 平行于三角形一边的直线和其他两边或两边的
5、延长线相交,所构成的三角形与原三角形相似43、相似三角形断定定理1 两角对应相等,两三角形相似ASA44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似45、断定定理2 两边对应成比例且夹角相等,两三角形相似SAS46、断定定理3 三边对应成比例,两三角形相似SSS47、定理 假如一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似48、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比49、性质定理2 相似三角形周长的比等于相似比50、性质定理3 相似三角形面积的比等于相似比的平方51、边角边公理 有两边
6、和它们的夹角对应相等的两个三角形全等52、角边角公理 有两角和它们的夹边对应相等的两个三角形全等53、推论 有两角和其中一角的对边对应相等的两个三角形全等54、边边边公理 有三边对应相等的两个三角形全等55、斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等56、全等三角形的对应边、对应角相等初中几何公式定理:四边形57、定理 四边形的内角和等于360°58、四边形的外角和等于360°59、多边形内角和定理 n边形的内角的和等于n-2×180°60、推论 任意多边的外角和等于360°61、平行四边形性质定理1 平行四边形的对角相等
7、62、平行四边形性质定理2 平行四边形的对边相等63、推论 夹在两条平行线间的平行线段相等64、平行四边形性质定理3 平行四边形的对角线互相平分65、平行四边形断定定理1 两组对角分别相等的四边形是平行四边形66、平行四边形断定定理2 两组对边分别相等的四边形是平行四边形67、平行四边形断定定理3 对角线互相平分的四边形是平行四边形68、平行四边形断定定理4 一组对边平行相等的四边形是平行四边形初中几何公式定理:矩形69、矩形性质定理1 矩形的四个角都是直角70、矩形性质定理2 矩形的对角线相等71、矩形断定定理1 有三个角是直角的四边形是矩形72、矩形断定定理2 对角线相等的平行四边形是矩形
8、初中几何公式:菱形73、菱形性质定理1 菱形的四条边都相等74、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角75、菱形面积=对角线乘积的一半,即S=a×b÷276、菱形断定定理1 四边都相等的四边形是菱形77、菱形断定定理2 对角线互相垂直的平行四边形是菱形初中几何公式定理:正方形78、正方形性质定理1 正方形的四个角都是直角,四条边都相等79、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角80、定理1 关于中心对称的两个图形是全等的81、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分82
9、、逆定理 假如两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式定理:等腰梯形83、等腰梯形性质定理 等腰梯形在同一底上的两个角相等84、等腰梯形的两条对角线相等85、等腰梯形断定定理 在同一底上的两个角相等的梯形是等腰梯形86、对角线相等的梯形是等腰梯形初中几何公式:等分87、平行线等分线段定理 假如一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等88、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰89、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边90、三角形中位线定理 三角形的中位线平行于第三边,并且
10、等于它的一半91、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=a+b÷2 S=L×h92 、1比例的根本性质 假如a:b=c:d,那么ad=bc 假如ad=bc,那么a:b=c:d93、2合比性质 假如a/b=c/d,那么a±b/b=c±d/d94、3等比性质 假如a/b=c/d=m/nb+d+n0,那么,a+c+m/b+d+n=a/b95、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例96、推论 平行于三角形一边的直线截其他两边或两边的延长线,所得的对应线段成比例97、定理 假如一条直线截三角形的两边或两边的延
11、长线所得的对应线段成比例,那么这条直线平行于三角形的第三边98、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值初中几何公式:圆101、圆是定点的间隔 等于定长的点的集合102、圆的内部可以看作是圆心的间隔 小于半径的点的集合103、圆的外部可以看作是圆心的间隔 大于半径的点的集合104、同圆或等圆的半径相等105、到定点的间隔 等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和线段
12、两个端点的间隔 相等的点的轨迹,是着条线段的垂直平分线107、到角的两边间隔 相等的点的轨迹,是这个角的平分线108、到两条平行线间隔 相等的点的轨迹,是和这两条平行线平行且间隔 相等的一条直线109、定理 不在同一直线上的三个点确定一条直线110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧弦的垂直平分线经过圆心,并且平分弦所对的两条弧平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2 圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理 在同圆或等圆中,相等的
13、圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论 在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理 一条弧所对的圆周角等于它所对的圆心角的一半117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2 半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3 假如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、直线L和O相交 dr 直线L和O相切 d=
14、r 直线L和O相离 dr122、切线的断定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理 圆的切线垂直于经过切点的半径124、推论1 经过圆心且垂直于切线的直线必经过切点125、推论2 经过切点且垂直于切线的直线必经过圆心126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理 弦切角等于它所夹的弧对的圆周角129、推论 假如两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论 假如弦与直径
15、垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、假如两个圆相切,那么切点一定在连心线上135、两圆外离 dR+r 两圆外切 d=R+r两圆相交 R-rdR+rRr两圆内切 d=R-rRr 两圆内含dR-rRr136定理 相交两圆的连心线垂直平分两圆的公共弦家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活
16、动及阅读情况及时传递给家长,要求孩子回家向家长朗读儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读才能进步很快。137、定理 把圆分成nn3:依次连结各分点所得的多边形是这个圆的内接正n边形唐宋或更早之前,针对“经学“律学“算学和“书学各科目,其相应传授者称为“博士,这与当今“博士含义已经相去甚远。而对那些特别讲授“武事或讲解“经籍者,又称“讲师。“教授和“助教均原为学官称谓。前者始于宋,乃“宗学“律学“医学“武学等科目的讲授者;而后者那么于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教在古代不仅要作入流的学问,其教书育人的职责也十清楚晰。唐代国子学、太学等所设之“助教一席,也是当朝打眼的学官。至明清两代,只设国子监国子学一科的“助教,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士“讲师,还是“教授“助教,其今日老师应具有的根本概念都具有了。经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形“教书先生恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生概念并非源于教书,最初出现的“先生一词也并非有传授知识那般的含义。?孟子?中的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 污泥资源化综合利用项目可行性研究报告
- 生物基二元醇项目可行性研究报告
- 防汛知识培训领导开场白课件
- 战略合作协议
- 结直肠息肉门诊管理专家共识(2025成都)
- 科技数码产品电子产品推广方案设计
- 继承财产分配协议范本书5篇
- 借款还贷合同书7篇
- 河北省唐山市2025-2026学年高三上学期开学摸底考试物理试卷
- 精神疾病社会污名化-洞察及研究
- 乡镇综合行政执法队队长试用期满转正工作总结
- 2025天津医科大学眼科医院第三批招聘1人备考考试试题及答案解析
- 新版苏教版四年级上册科学(全册教案及教学计划及进度表)
- 国际压力性损伤-溃疡预防和治疗临床指南(2025年版)解读课件
- 慢性乙型肝炎防治指南(2022年版)
- 出售废旧物资证明 出售废料证明 回收证明
- “国培计划”优秀工作案例推荐表——“八张清单”撬动送教下乡的兴奋点
- 《色彩基础知识》PPT课件(详解)
- 美术作品的艺术语言
- (高清正版)T_CAGHP 066—2019危岩落石柔性防护网工程技术规范(试行)
- 9.冷轧板带材生产解析
评论
0/150
提交评论