人力资源调度的优化模型_第1页
人力资源调度的优化模型_第2页
人力资源调度的优化模型_第3页
人力资源调度的优化模型_第4页
人力资源调度的优化模型_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上人力资源调度的优化模型摘要本文主要研究人力资源调度的最优化问题。人力资源调度问题中所要处理的数据之间的关系是比较繁琐的,所以如何有效地设置决策变量,找出相互关系是我们建立模型的突破口。上述模型属于多元函数的条件极值问题的范围,然而许多实际问题归结出的这种形式的优化模型,起决策变量个数n和约束条件m一般比较大,并且最优解往往在可行域的边界上取到,这样就不能简单地用微分法求解,数学规划是解决这类问题的有效方法。根据所给的“PE公司”技术人员结构及工资情况表、不同项目和各种人员的收费标准表格,为了在满足客户对专业技术人员结构要求的前提下,使“PE公司”每天的直接收益最大,我

2、们首先对不同项目的不同技术人员的分配个数进行假设,从而得到了“PE公司”每天总收入I和每天总支出,所以每天的直接收益,这就是公司每天直接收益的目标函数。在此基础上我们建立了基于Matlab软件上的线性规划方法一和基于Lindo6.0软件上的整数线性规划方法二来求解这个模型。首先我们Matlab软件运行这个函数,得到求得的值恰好是整数,满足题意,在题目的约束条件下得到的最大公司效益是27150元,此时的人员分布如下表所示: 项目技术人员 ABCD高级工程师1521工程师6362助理工程师2521技术员1310因为对题中的数据稍做改动时得出的答案就会出现小数的现象,为了更好的解决该问题,我们又引入

3、了一个很好地能处理整数的软件Lindo6.0,得到了各个有效的数据。并在模型扩展中运用已建立的程序对所得的结果进行灵敏度分析,即讨论在收费标准不变的情况下技术人员结构对公司收益的影响以及在技术人员结构不变的情况下收费标准对公司收益的影响,并且进一步分析在怎样的范围内最优解保持不变,并联系社会实际进行了一定的分析。最后在适当简化模型的同时,对模型进行了改进和推广,预示了高素质人才在现代社会中将发挥着越来越重要的作用。关键词:人力资源调度;决策变量;可行域;灵敏度分析;博弈论 一.问题重述:“PE公司”是一家从事电力工程技术的中美合资公司,现有41个专业技术人员,其结构和相应的工资水平分布如表1所

4、示。表1 公司的人员结构及工资情况高级工程师工程师助理工程师技术员人 数日工资(元)925017200101705110目前,公司承接有4个工程项目,其中2项是现场施工监理,分别在A地和B地,主要工作在现场完成;另外2项是工程设计,分别在C地和D地,主要工作在办公室完成。由于4 个项目来源于不同客户,并且工作的难易程度不一,因此,各项目的合同对有关技术人员的收费标准不同,具体情况如表2所示。表2 不同项目和各种人员的收费标准高级工程师工程师助理工程师技术员收费(元/天)ABCD1000150013001000800800900800600700700700500600400500为了保证工程质

5、量,各项目中必须保证专业人员结构符合客户的要求,具体情况如表3 所示:表3:各项目对专业技术人员结构的要求ABCD高级工程师工程师助理工程师技术员总计1322110252231622211112281-18说明:l 表中“13”表示“大于等于1,小于等于3”,其他有“”符号的同理;l 项目D,由于技术要求较高,人员配备必须是助理工程师以上,技术员不能参加;l 高级工程师相对稀缺,而且是质量保证的关键,因此,各项目客户对高级工程师的配备有不能少于一定数目的限制。各项目对其他专业人员也有不同的限制或要求;l 各项目客户对总人数都有限制;l 由于C、D两项目是在办公室完成,所以每人每天有50元的管理

6、费开支。由于收费是按人工计算的,而且4个项目总共同时最多需要的人数是10+16+11+18=55,多于公司现有人数41。因此需解决的问题是:如何合理的分配现有的技术力量,使公司每天的直接收益最大?并写出相应的论证报告。 二.模型假设和符号说明:1.模型假设根据问题的要求,并为了达到将问题进一步明确抽象的目的,在我们的模型中有如下的假设:1) PE公司是在同一时间接手A、B、C、D四个工程项目。2) PE公司的各种技术人员分工相当明确,如高级工程师不能兼职工程师的工作。3) PE公司的专业技术人员在接手工程期间不存在着请假,缺席的现象。4) 在PE公司接手这四个工程的间段,市场物价稳定。各级技术

7、人员的收费标准分别在如下的范围内: 高级工程师的收费最低不低于800元,最高不超过1600元; 工程师的收费最低不低于500元,最高不超过1200元; 助理工程师的收费最低不低于300元,最高不超过900 元; 技术员的收费最低不低于150元,最高不超过600元。5) 假设A,B,C,是如下四个矩阵: 2.符号说明分别代表的是在A、B、C、D项目中高级工程师的人数安排分别代表的是在A、B、C、D项目中工程师的人数安排分别代表的是在A、B、C、D项目中助理工程师的人数安排分别代表的是在A、B、C、D项目中技术员的人数安排分别代表的是高级工程师在A、B、C、D项目中的每天收费标准分别代表的是工程师

8、在A、B、C、D项目中的每天收费标准分别代表的是助理工程师在A、B、C、D项目中的每天收费标准分别代表的是技术员在A、B、C、D项目中的每天收费标准分别代表的是PE公司为A、B、C、D项目中的高级工程师每天所支付的费用分别代表的是PE公司在A、B、C、D项目中的工程师每天所支付的费用分别代表的是PE公司为A、B、C、D项目中的助理工程师每天所支付的费用分别代表的是PE公司为A、B、C、D项目中的技术员每天所支付的费用注: PE公司支出费用包括技术人员的工资和C、D项目中每个人员每天的50元管理费。三.模型的建立:模型:基于Matlab的线性规划方法根据题意以及上面的符号说明可以得到下列A,B,

9、C的值A=1000 1500 1300 1000 800 800 900 800 600 700 700 700 500 600 400 500B=250 250 300 300 200 200 250 250 170 170 220 220 110 110 160 160C=AB=750 1250 1000 700 600 600 650 550 430 530 480 480 390 490 240 340 于是得到目标函数:我们首先来观察表1和表3,因为A、B、C、D四个工程需要的技术员最低限分别是1、3、1、0,而PE公司的技术员恰好只有5人,所以关于技术员的调度就已经确定,A工程1人

10、,B程3人,工程1人,工程0人。即: 。又有C工程中高级工程师的数量已定,因此其实只有11个决策变量在影响最终公司效益。用Matlab 6.5软件中的函数x,fval=linprog(C,A,b,Aeq,beq,vlb,vub)解,具体程序看附录1:得出数据X=1,5,2,1,6,3,6,2,2,5,2,1,1,3,1,0TMax Z=CX=27150通过对高级工程师的人数变化时(其他因素全都不变),分析其对最大公司效益的影响,分别取高级工程师的人数是9,10,11,12的情况: 得出结果如下表所示:高级工程师人数x11x12x13x14.91.00005.00002.00001.000010

11、1.70205.00002.00001.2980112.56485.00002.00001.4352123.00005.00002.00002.0000x21x22x23x24,96.00003.00006.00002.0000105.29803.10866.00002.5933114.43523.85066.00002.7143124.00004.01876.00002.9813高级工程师人数x31x32x33x3492.00005.00002.00001.0000102.00004.89142.00001.1086112.00004.14942.00001.8506122.00003.98

12、132.00002.0187高级工程师人数x41x42x43x4491.00003.00001.00000.0000101.00003.00001.00000.0000111.00003.00001.00000.0000121.00003.00001.00000.0000上述表格缺陷在于人员分配个数出现了小数,这跟实际问题相违背。分析其原因主要在于:我们用这个Matlab6.5软件做出来的就是基于用单纯形法引入松弛变量而得出来的。因为松弛问题是作为一个线形规划问题,其可行解的集合是一个凸集,任意两个可行解的凸集组合仍为可行解。由于整数规划问题的可行解一定也是松弛问题的可行解(反之则不一定),所

13、以前者最优解的目标函数值不会优于后者最优解的目标函数值。在一般情况下,松弛问题的最优解不会刚好满足变量的整数约束条件,因而不是整数规划的可行解,自然就不是整数规划的最优解。我们用Matlab 6.5中函数x,fval=linprog(C,A,b,Aeq,beq,vlb,vub)求解出来的当高级工程师人数变化时出现了小数现象,就是上述所述的问题。此时,若对松弛问题的这个最优解中不符合整数要求的分量简单的取整,所得到的解不一定是整数规划问题的最优解,甚至也不一定是整数规划问题的可行解。基于这个问题我们引入了解这个模型的第二种方法。模型:基于LinDo6.0的整数规划方法:对于该问题我们有同于4.1

14、的目标函数及约束条件,即用Lindo6.0求解问题,程序具体见附录2:得出数据X=1,5,2,1,6,3,6,2,2,5,2,1,1,3,1,0TMaxZ=CX=27150结果跟方法一的相同,从而也验证了结果的正确性。下面着重通过人数变化(其他因素都不变)对公司最大效益的影响进行分析,得出下列数据:高级工程师人数变化总人数公司效益最大值(单位为元)94127150104227850114328550124429250134529250工程师人数变化总人数公司效益最大值(单位为元)1741271501842277001943282502044288002145293502246299002347

15、30450244831000254931550265032100275132150285232150助理工程师的人数变化总人数公司效益最大值(单位为元)104127150114227630124328110134428590144529070154629550164730030174830510184930990195031470205131950215232430225332910235433390245533870技术员人数的变化总人数公司效益最大值(单位为元)54127150642275907432803084428470945289101046292501147295901248299

16、30134930270145030410155130410四.模型分析:主要采用灵敏度分析法:上面表格中除了告诉我们问题的最优解和最优值以外,还能挖掘出许多隐含着的有用信息:1.(在允许范围内)每增加一个高级工程师使得公司效益增加700元,如高级工程师的人数从9个增加到10个公司效益就增大了700元。增加一个工程师使得公司效益增加550元,增加一个助理工程师使得公司效益增加480元,增加一个技术员使得公司效益增加440元,上面公司效益的增加可以看作人数的潜在价值称为“影子价格”,即高级工程师的影子价格是700元,工程师的影子价格是550元,助理工程师的影子价格是480元,技术员的影子价格是44

17、0元。2.当目标函数的系数发生变化时(假定约束条件不变),最优解会改变吗?带着这个问题,我们又用Lindo6.0软件进行了单个系数变化的处理.即在最初的最优解不变的情况下,求出各系数允许的变化范围(以其他系数不变作为前提,求出一个目标系数变化的范围)。D公司不需要技术员,C公司对高级工程师的人数是常数2,所以他们不会对最终公司效益产生影响,这里就只分析其他的自变量前的系数的变化。列出表格如下:此变量前的系数X11X12X13X14X21X22X23X24允许的变化范围0-1249751- +0- +0-1249551- +551-650551- +0-599公司效益变化幅度15216362此变

18、量前的系数X31X32X33X34X41X42X43允许的变化范围0-529480- +0-5800-5300- +0- +0- +公司效益变化幅度2521131说明:表格的第一行表示列出的各变量xij前系数(表格中就用变量代替表示)。第二行表示在最优解不变的情况下其系数的变化范围。如0-1249是指其前面的系数从0变化到1249元,最优解都是不会变化的。第三行表示当变量前面的系数在这个范围变化时,虽然最优解不发生变化,但是最优值将发生变化,目标系数变化一个单位时,最优值以表格中列的数值为幅度变化。而还可以发现这个幅度就是得出的最优解里的相应项目中具体人员分布的人数,我们得出的最优解是X=1,

19、5,2,1,6,3,6,2,2,5,2,1,1,3,1。由上述表格还可以画出最大公司效益与目标系数的关系图,这里只列举x11,x12,x13,x22前面目标系数变化时,最大公司效益和目标系数的变化关系。同理其他的都可以归结为这四类中的一类。如下图:红线表示的就是上面表格中列的最优解保持不变时,系数变动对最优值的影响区域。Max z F 27150 B 26400O 750 c11Max z 27150 B 25150O 1000 c13Max z B F2 F1O 1250 c12对上面图形说明:各个图中的黑点(即折线的交点)表示最优解发生变化的临界点。用这个分析结果很容易看到,若某一个工程项

20、目只增加其中一种技术人员的收费标准时(该工程中其他技术人员的收费标准和其它项目中人员的收费标准,人数需求均保持不变),可以使公司的最大效益增加,但是人力资源调度不变。这样公司可以根据这个标准跟对方商谈价格,在一定的人数范围内,公司的领导阶层可以尽可能地提高收费标准,为公司获得最大的效益;同时对需求方来说他则要出低一点的收费标准来得到项目需求的人数,这样需求方可以使支出大大减小。这个尽可能低的工资从理论上来说有的甚至可以达到零值,但是这是不符合实际情况的。主要原因是我们算出来的是理论值,从理论上来说是可以的。我们不能说只根据理论而去采取使高级工程师的工资为250元(固定工资),而技术员的工资还是

21、500元这样的收费标准,即使是人员分配还是符合项目的要求。这就要求公司和需求方共同商议来达到一个较好的值,所以模型要跟实际联系起来才能得到更好的实际意义。3.对上面的第1点的人员分配做进一步的分析:(1).对于高级工程师来说,随着高级工程师单位人数的增加,最大公司效益以700元的幅度递增。但是当人数增加到12人时,最大公司效益却不再增加。此时在达到这个最大公司效益的上限值时,对应着一个总人数是44(<55)。为什么会出现这个现象呢?按照正常的想法应该是高级工程师越多越好。但在此题中对此很好解释,因为高级工程师的人数都有一个上限,即他不能像我们想象的那样可以无限增加直到55。又由于实际中高

22、级工程师相对稀缺,而且是质量保证的关键。因此各个项目客户对高级工程师的配备有不能少于一定数目的限制是需要的。(2).对于工程师来说,同样随着工程师单位人数的增加,最大公司效益以550元的幅度递增。当人数达到27人时,最大公司效益也不再增加,而是保持在27150元这个值不变。此时的总人数是51(<55),又出现了这样的现象。显然这里并不是纯粹的如上面的原因,仔细观察上面的数据图可以看到此时A、B、C三个项目都已经达到了最大的约束项限制,而在D地却没有达到,从这里就可以得出主要原因是在D地,同样的在D地对工程师的人数需求是28,又是上面提到的存在上限的问题。(3).对于助理工程师来说,随着助

23、理工程师单位人数的增加,最大公司效益以小一点的值480元的幅度递增。当人数达到24人时,已经达到了使最大公司效益不变的值,此时最大值33870元,此时总人数刚好达到题目限制的最大值55人,得到了较好的人数分配,使得每个工程项目都能有足够的人力资源来进行工作。(4).对于技术员来说,相对于技术员单位人数的增加,最大公司效益也是以幅度440元来递增。虽然技术员并没有像上面所说有上限的限制,但是在最大公司效益不再改变时,技术员有14人,此时总人数是50人,并不能达到55人。此时最大公司效益已经达到了30410元。这里虽然没有像上面所说的上限约束的限制,可是人数还是不能达到最大分配。这里还是要从题目表

24、格里仔细观察发现:D地由于技术要求较高,技术员不能参加。这里就给了人数一个很大的限制,所以技术员在是A,B,C三地达到最大满足后不能再增加了。这个分析结果对实际应用很有价值。像这里A,B,C,D四个项目共需要55个人,当公司有足够的人员来分配给他们时,如果它不加考虑的就分配这样会出现人员浪费。比如就拿技术员来说,他达到14人时公司效益不再增加。公司如果分配了18人给需求方,这样这四个技术员就好似没有得到任何利润,就存在着这种浪费现象。实际中公司接手的项目往往有很多个,这里人员分配就显得更加重要,否则很可能会出现分配了这里而在那里得不到满足。可见考虑这个问题是非常必须的。用这个模型可以很方便的解

25、决这些问题。五.模型的改进与推广:(1)以上的模型还没有讲到各级技术人员分别对公司效益的产生影响。实际情况中,不同级别的技术人员对公司的效益都是不同的,下面我们就以问题为代表来讨论高级工程师、工程师、助理工程师、技术员在整体上和人均上每天为公司所创的效益。(注:在这里我们假设在C、D两个项目中每人每天不需要50元的管理开支费。)那么,在整体上:9个高级工程师每天为公司所创的纯收入为: 17个工程师每天为公司所创的纯收入为:10个助理工程师每天为公司所创的纯收入为:5个技术员每天为公司所创的纯收入为:在人均上: 每个高级工程师每天为公司所创的纯收入:每个工程师每天为公司所创的纯收入: 每个助理工

26、程师每天为公司所创的纯收入: 每个技术员每天为公司所创的纯收入:从上面表1中可以看出高级工程师和工程师在公司中所起的作用是举足轻重的,由此可见一个公司若没有高技术人员的加盟,它的效益就不会高,在激烈的竞争中就很难立足,有可能就会面临破产的悲剧。从表2 中可以看出高级工程师每天人均为公司所创的纯收入是十分可观的,正因为如此现在无论各个行业各个部门都希望高素质人才加盟自己的队伍,而国际上也把科学技术作为衡量一个国家综合国力的重要标志,这也印证了“科学技术是生产力”的道理,符合当今社会现实潮流。六.模型评价:模型的优点如下:1) 模型的主体采取L软件处理数据和对其进行灵敏度分析,准确性高,容量大,逻

27、辑性严格,计算速度快,具有较强的说服力和适应能力。2) 动态的分析了各种人员人数变化对公司效益的影响和各种人员收费标准变化对公司效益的影响。3) 从单纯的问题分析中,预见到了现今社会对高技术人才的需求程度。模型的缺点如下:1) 我们在灵敏度分析中,对模型中最优值的影响因素只是从单个方面的变化考虑。不是十分的全面。参考文献1.胡运权,郭耀煌. 运筹学教程. 清华大学出版社. 19982.姜启源, 谢金星, 叶俊.数学模型. 高等教育出版社. 20033. 赵静 , 但琦. 数学建模与数学实验(第二版). 高等教育出版社 2003附录1: A=1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 0 0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论