



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、圆周长、弧长(一)教学目标:1、初步掌握圆周长、弧长公式;2、通过弧长公式的推导,培养学生探究新问题的能力;3、调动学生的积极性,培养学生的钻研精神;4、进一步培养学生从实际问题中抽象出数学模型的能力,综合运用所学知识分析问题和解决问题的能力教学重点:弧长公式教学难点:正确理解弧长公式教学活动设计: (一)复习(圆周长)已知O半径为R,O的周长C是多少?C=2R这里=3.14159,这个无限不循环的小数叫做圆周率由于生产、生活实际中常遇到有关弧的长度计算,那么怎样求一段弧的长度呢?提出新问题:已知O半径为R,求n°圆心角所对弧长(二)探究新问题、归纳结论教师组织学生探讨(因为问题并不
2、难,学生完全可以自己研究得到公式)研究步骤:(1)圆周长C=2R;(2)1°圆心角所对弧长= ;(3)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;(4)n°圆心角所对弧长= 归纳结论:若设O半径为R, n°圆心角所对弧长l,则 (弧长公式)(三)理解公式、区分概念教师引导学生理解:(1)在应用弧长公式 进行计算时,要注意公式中n的意义n表示1°圆心角的倍数,它是不带单位的;(2)公式可以理解记忆(即按照上面推导过程记忆);(3)区分弧、弧的度数、弧长三概念度数相等的弧,弧长不一定相等,弧长相等的弧也不一定是等孤,而只有在同圆或等
3、圆中,才可能是等弧(四)初步应用例1、已知:如图,圆环的外圆周长C1=250cm,内圆周长C2=150cm,求圆环的宽度d (精确到1mm) 分析:(1)圆环的宽度与同心圆半径有什么关系?(2)已知周长怎样求半径?(学生独立完成)解:设外圆的半径为R1,内圆的半径为R2,则d= , , (cm) 例2,弯制管道时,先按中心线计算展直长度,再下料,试计算图所示管道的展直长度L(单位:mm,精确到1mm)教师引导学生把实际问题抽象成数学问题,渗透数学建模思想解:由弧长公式,得 (mm)所要求的展直长度L (mm)答:管道的展直长度为2970mm课堂练习:P176练习1、4题(五)总结知识:圆周长、弧长公式;圆周率概念;能力:探究问题的方法和能力
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《脑卒中护理查房》课件
- 个人网上商店销售平台运营合作协议
- 返聘协议书书范本
- 建筑企业借款合同书
- 公司合并吸收转让协议书
- 生物医药市场分析与营销试题
- 服装店铺协议书
- 月嫂定金协议书
- 软件委托研发合同协议
- 通风排烟施工合同协议
- 微机考试试题及答案
- 《甲烷吸附储存技术》课件
- 2025物业管理服务承包合同范本
- 企业所得税课件
- 2025年高考政治核心知识总结
- 托管中心晚辅老师培训
- 兼职顾问服务合同范本
- 人教版(新教材)高中物理选择性必修2教学设计2:2 2 法拉第电磁感应定律教案
- 2024-2025学年人教版数学八年级下册期中押题重难点检测卷(含答案)
- 广西地方公路养护工程预算定额
- 姐妹间房屋转让合同协议
评论
0/150
提交评论