




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2 2 正交多项式正交多项式一、正交函数族与正交多项式一、正交函数族与正交多项式.,)()(2.1) 0d)()()(),( ,)(,)(),( 带权带权(x)正交(x)正交定义5定义5上上在在与与则称则称,且且上的权函数上的权函数为为若若baxgxfxxgxfxgfbaxbaCxgxfba . ,1 ,.,)(2.2) ), 2 , 1 , 0,( , , , 0)(),( ,),(,),(),(,10 标准正交函数族标准正交函数族 数族数族带权带权(x)的正交函(x)的正交函则称该函数系为则称该函数系为时时当当特别地特别地上上为为则称函数族则称函数族且满足且满足给定函数族给定函数族设在设在
2、 knkkinAbaxkikiAkixxxxxba ,2sin,2cos,sin,cos, 1 上的正交函数族上的正交函数族为为例如,三角函数族例如,三角函数族 xxxx. 0,)sin,(sin)cos,(cos,2)1 , 1( 其他内积其他内积 kxkxkxkx.,)()( .,)()(2.2),)( ,)(,0,)( 00交交多多项项式式次次正正上上的的为为权权函函数数的的为为以以称称多多项项式式序序列列上上的的正正交交为为权权函函数数的的为为以以,则则称称满满足足正正交交性性若若多多项项式式序序列列上上的的权权函函数数为为次次多多项项式式的的上上首首项项系系数数是是设设nbaxxpb
3、axxpxpbaxnabaxpnnnnn 定定义义6 6 , ( ), 1, ,:na bxxx只要给定上的权函数由利用逐个正交化手续立得正交多项式序列(2.3) ., 2 , 1 ,),(),()( , 0)(100 nppppxxxpxpjnjjjjnnn. )(, 0),( )3(.)(,),(),()()2(. 1)()(110项项式式正正交交的的多多与与任任一一次次数数小小于于且且时时,当当的的线线性性组组合合均均可可表表为为的的首首项项系系数数为为性性质质:kxpppjkxpxpxpHxQxpkkjnnnn 注意:注意:这些多项这些多项式是线性无关的式是线性无关的 , 2 , 1)
4、,/(),( ),/(),( 0 )(1)( (2.4) , 1 , 0 ),()()()( 4111011 npppppppxpxpxpnxpxpxxpnnnnnnnnnnnnnnn,其其中中)有有递递推推关关系系( ;),()1)( .,)()(50内的单重实根内的单重实根个根都是在个根都是在的的则则序列序列上的正交多项式上的正交多项式为权函数的为权函数的为以为以)设)设(bannxpbaxxpnn 二、勒让德多项式二、勒让德多项式. . 式式L Le eg ge en nd dr re e多多项项 次次称称为为的的正正交交多多项项式式上上带带权权区区间间n(2.5) ), 2 , 1 ,
5、 0( ,)1(dd!21)( 1)(1 , 12 nxxnxPxnnnnn .) !(2)!2(!2)1()12(22nnnnnnannn 其其首首项项系系数数(2.6) ), 2 , 1 , 0( ,)1(dd)!2(!)(12 nxxnnxPnnnn 勒让德多项式为为的的首首项项系系数数为为:勒让让德多项式性xxxxxnmxxPxPmnmnmnnnmmmnmnmd ) 1(dd) 1(dd!21d )()( ., i)( 112211次分部积分做不妨时当证:(2.7) . ,122, , 0d )()( 11 nmnnmxxPxPnm正交性正交性(1)xxxxxnmxxxxnmnnnmm
6、mnmnnnmmmnmd )1(dd)1(dd!21 )1(dd)1(dd!2111211211112112 xxxxxnmnmnmnmmmnmmd )1(dd)1(dd!21)1(112222 . 0)1(dd!2)!2()1(11211 nmnmnnmmxxnmmxxnnxxPnmnnnnd)1() !(2)!2()1(d )( . ii)(11222112 时时当当ttnnnntxdcos) !2()!2(2/2/122sin .122 3)12)(12(2)22)(2(2) !2()!2(2 nnnnnnnn(2.8) . )()1()( xPxPnnn 奇偶性奇偶性(2).n)1 ,
7、 1()( 个个互互异异的的实实零零点点内内部部有有在在 xPn(3)(2.9) ), 2 , 1( ),(1)(112)(,)( , 1)( 1110 nxPnnxxPnnxPxxPxPnnn递推关系递推关系(4) ),35(21)( ),13(21)( 3322xxxPxxP 可得可得三、切比雪夫多项式三、切比雪夫多项式切比雪夫多项式.切比雪夫多项式.次次称为称为正交化所得正交多项式正交化所得正交多项式,序列,序列权函数为权函数为区间为区间为n, 111)(,1 , 12nxxxx .0),cos()(cos(2.10) ), 2 , 1 , 0, 11( ),arccoscos()( n
8、xTxnxxnxTnn,则则若若令令可可表表为为 ,34)(, 12)arccos2cos()(,)cos(arccos)(, 1)0cos()(332210 xxxTxxxTxxxTxT :切切比比雪雪夫夫多多项项式式的的性性质质(2.11) ).()(2)( ,)( , 1)( )1(1110 xTxxTxTxxTxTnnn递推关系递推关系1).(n,2)(1 nnnxxT的的系系数数为为的的最最高高次次幂幂 . ,cos . 1 ,)1cos(coscos2)1(cos 即得递推关系式即得递推关系式代入代入事实上,只需由事实上,只需由 xnnnn(2.12) . 0 , 0 , 2/ ,
9、 , 0d)()(11 )2(112 nmnmnmxxTxTxnm 正正交交性性. ;)( )3(的偶次幂的偶次幂只含只含为偶数时为偶函数,且为偶数时为偶函数,且当当的奇次幂的奇次幂只含只含为奇数时为奇函数,且为奇数时为奇函数,且当当奇偶性奇偶性xnxnxTn ), 2 , 1( ,2)12(cos n1 , 1)( )4(nknkxxTkn 个个不不同同的的零零点点上上有有在在四、切比雪夫多项式零点插值四、切比雪夫多项式零点插值五、其他常用正交多项式五、其他常用正交多项式第第二二类类切切比比雪雪夫夫多多项项式式 1 1. . . 多多项项式式第第二二类类切切比比雪雪夫称称为为的的正正交交多多项项式式上上带带权权区区间间(2.14) ,1arccos)1sin()( 1)(1 , 122xxnxUxxn . , 2/, , 0d1)()( 112 nmnmxxxUxUnm ).()(2)( ,2)( , 1)( 1110 xUxxUxUxxUxUnnn拉拉盖盖尔尔多多项项式式 2 2. . . 拉盖尔多项式拉盖尔多项式称为称为的正交多项式的正交多项式上带权上带权区间区间(2.15) ),(dd)( )(), 0 xnnnxnxexxexLex . ,) !(, , 0d )()( 20 nmnnmxxL
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年施工员专业基础知识全真模拟试卷及答案(共七套)
- 精明宝宝测试题及答案
- 新型纳米材料的合成挑战试题及答案
- 安全工程师考试中关于事故处理的求解考题试题及答案
- 有机合成反应类型试题及答案
- 黄石社区面试真题及答案
- 2025年公务员考试题目及答案
- 家具设计师的创新思维与案例分析试题及答案
- 小学教育教学反思对教师发展的重要性试题及答案
- 中药现代化进程中的国际市场中药产品价格策略研究报告
- 中央2024年国家图书馆招聘应届生笔试上岸历年典型考题与考点剖析附带答案详解
- 小学科学教育工作领导小组及其职责
- 农业人工智能应用智慧树知到期末考试答案章节答案2024年黑龙江农业经济职业学院、广州万维视景科技有限公司
- MOOC 中国电影经典影片鉴赏-北京师范大学 中国大学慕课答案
- 教师职业道德完整省公开课金奖全国赛课一等奖微课获奖
- 中国木雕艺术智慧树知到期末考试答案2024年
- 红色研学实践活动方案策划
- 数字贸易学 课件 第11章 全球公司
- 江苏省无锡市2023-2024学年五年级下学期期中模拟测试数学试卷(苏教版)
- 急性胰腺炎护理查房
- 干细胞行业推广方案
评论
0/150
提交评论