棒料自动切割装置设计(全套含说明书和CAD图纸)
收藏
资源目录
压缩包内文档预览:(预览前20页/共64页)
编号:207688838
类型:共享资源
大小:9.08MB
格式:ZIP
上传时间:2022-04-12
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
50
积分
- 关 键 词:
-
自动
切割
装置
设计
全套
说明书
CAD
图纸
- 资源描述:
-
棒料自动切割装置设计(全套含说明书和CAD图纸),自动,切割,装置,设计,全套,说明书,CAD,图纸
- 内容简介:
-
编号: 桂林电子科技大学信息科技学院毕业设计(论文)题 目: 棒料自动切割装配装置设计 院 (系): 机电工程系 专 业: 机械设计制造及其自动化 学生姓名: 黄 宇 学 号: 1053100201 指导教师单位: 桂林电子科技大学 姓 名: 唐 良 宝 职 称: 教 授 题目类型:理论研究 实验研究 工程设计 工程技术研究 软件开发 2014年05月05日摘 要本次设计是对棒料自动切割装配装置的设计。在这里主要包括:传动系统的设计、装夹部位系统的设计、切割片主轴部位系统的设计这次毕业设计对设计工作的基本技能的训练,提高了分析和解决工程技术问题的能力,并为进行一般机械的设计创造了一定条件。整机结构主要由电动机产生动力通过联轴器将需要的动力传递到丝杆上,丝杆带动丝杆螺母,从而带动整机运动,提高劳动生产率和生产自动化水平。更显示其优越性,有着广阔的发展前途。本论文研究内容:(1) 棒料自动切割装配装置总体结构设计。(2) 棒料自动切割装配装置工作性能分析。(3)电动机的选择。(4) 棒料自动切割装配装置的传动系统、执行部件及机架设计。(5)对设计零件进行设计计算分析和校核。(6)绘制整机装配图及重要部件装配图和设计零件的零件图。 关键词:棒料自动切割装配装置, 联轴器,滚珠丝杠 VIAbstractThis design is the design of assembly of rod material automatic cutting device. Here mainly include: design, drive system design of the cutting blade clamping spindle parts of system design, part of the system of graduation design on the design of the basic skills training, enhancing the analysis and to solve engineering problems, and create a certain condition for general mechanical design.The structure is mainly produced by the motor power through the coupling will need to transfer the power to the screw rod, the screw rod drives the screw rod nut, thereby driving the movement, improve labor productivity and automation level of production. But also show its superiority, there are broad prospects for the development.The research of this thesis:(1) the overall structure design of automatic assembly device for cutting bar.(2) analysis of assembly device performance of rod material automatic cutting.(3) the choice of motor.(4) transmission system, execution unit and frame design of automatic assembly device for cutting bar.(5) the design of components for the design calculation and check.(6) to draw the assembly drawing and parts assembly diagram and parts diagram design.Keywords: automatic cutting assembly device, bar coupling, ball screw目 录摘 要IIAbstractIII目 录IV1 绪论11.1棒料自动切割切割机的研究目的及意义11.1.1棒料自动切割切割机背景11.1.2意义11.2研究现状及发展趋势11.3本课题研究的内容及方法21.3.1主要的研究内容21.3.2设计要求31.3.3关键的技术问题32 棒料自动切割装配装置总体结构设计42.1设计的要求与数据42.2 同步带传动计算52.2.1 同步带计算选型52.2.2 同步带的主要参数(结构部分)82.2.3 同步带的设计102.2.4 同步带轮的设计102.3 夹紧装置设计113 X结构及传动设计133.1 X向滚珠丝杆副的选择143.1.1导程确定143.1.2确定丝杆的等效转速143.1.3估计工作台质量及负重143.1.4确定丝杆的等效负载143.1.5确定丝杆所受的最大动载荷153.1.6精度的选择163.1.7选择滚珠丝杆型号163.2校核173.2.1 临界压缩负荷验证173.2.2临界转速验证183.2.3丝杆拉压振动与扭转振动的固有频率193.3电机的选择193.3.1电机轴的转动惯量203.3.2电机扭矩计算214 Y向结构设计234.1 Y轴滚动导轨副的计算、选择234.2 滚珠丝杠计算、选择244.3 步进电机惯性负载的计算275 主轴组件要求与设计计算305.1 主轴的基本要求305.1.1 旋转精度305.1.2 刚度305.1.3 抗振性315.1.4 温升和热变形315.1.5 耐磨性325.2 主轴组件的布局325.3 主轴结构的初步拟定355.4 主轴的材料与热处理355.5 主轴的技术要求365.6 主轴直径的选择375.7 主轴前后轴承的选择375.8 轴承的选型及校核395.9 主轴前端悬伸量415.10 主轴支承跨距425.11 主轴结构图425.12 主轴组件的验算423.12.1 支承的简化433.12.2 主轴的挠度433.12.3 主轴倾角446 硬件电路设计466.1 计算机系统466.2 单片微机数控系统硬件电路设计内容466.3 各类芯片简介476.3.1 8031芯片简介476.3.2 373芯片简介486.3.3 6264芯片简介486.3.4 2764芯片简介486.3.5 8155芯片简介486.3.6 8255芯片简介496.4 存储器扩展电路设计496.4.1 程序存储器ROM的扩展496.4.2 数据存储器RAM的扩展496.4.3 译码电路的设计506.5 I/O接口电路的设计506.5.1 8155通用可编程接口芯片506.5.2 8255可编程接口芯片516.5.3 键盘显示接口电路516.6 8031的时钟电路526.7 复位电路526.8 越界报警电路536.9 掉电保护电路536.10 控制系统的功能536.11 控制工作原理53结论55参考文献56致 谢571 绪论1.1棒料自动切割切割机的研究目的及意义1.1.1棒料自动切割切割机背景在现代工业中,生产过程中的自动化已成为突出的主题。各行各业的自动化水平越来越高,现代化加工车间,常配有自动化生产设备,用来提高生产效率,完成工人难以完成的或者危险的工作。当然,也不排除PCB板的切割加工过程。我们发现切割技术已经渗透到各个领域并且被广泛使用。根据资料显示,我国每年钢铁的产量一般在3亿吨左右,其中有一半以上的钢有用到切割技术加工。我国每年的切割设备需求量金额超过50亿元。既然切割机能够这么普遍地应用在各个领域,它肯定具备了很大的市场竞争力。1.1.2意义1.横梁:采用方管对焊的结构,具有刚性好,精度高,自重轻,惯量小的特点。所有的切割件均采用振动时效去应力处理,有效的防止了结构变形;2.纵、横向驱动:横向导轨则采用了台湾进口的直线式导轨,纵向导轨是由精密加工的特质钢轨制成的,保证了切割机的运行平稳,精度高,且经久耐用,清洁美观;1.2研究现状及发展趋势激光切割机的切割速度快,精度和切割质量好等特点。在国家指定的长期发展规划时,又是将激光切割列入了关键支撑技术。因其涉及国家安全、国防建设及高新技术的产业化和科技前沿的发展,所以要对激光切割有很高的重视程度,这就将激光切割机的制造和升级带来很大的商机。随着用户对激光切割技术特点的逐步了解和采用的示范性地深入,这就带动了国内企业开发、生产激光切割机。我国从20世纪80年代开始进行大型机床等机械产品切割结构的研究,20 多年来已取得长足的进步。切割结构已经在现代化的数控机床等大型机床上应用以焊代铸以焊代锻的结构设计和制造技术迅速发展。在汽车制造工业方面,随着我国汽车产量的不断增加20世纪90年代开始从国外陆续引进先进的切割设备。并在车转动轴、刹车蹄片、轮圈以及其他部件的制造过程中普遍采用各种先进的切割工艺,提高了切割效率和产品质量。切割在船舶、汽车、锅炉、压力容器制造行业中也成为主要的生产工艺手段之一 。目 前,已有多种切割工艺方法获得各国船级社的认可而被应用于生产。自十一五期间开始进行高效切割技术的探索以来,至今已取得令人欣喜的成绩。在当前,棒料自动切割切割机的机构设计绝大多数还是依据具体的情况来设计专用切割棒料自动切割切割机,称之为固定结构的传统棒料自动切割切割机,其运动特性使特定棒料自动切割切割机仅能适应一定的范围,花费成本较大,不利于棒料自动切割切割机的发展。很数棒料自动切割切割机还有焊缝跟踪的功能,其不足之处就是在焊前必须通过人为的方式,帮助棒料自动切割切割机找到合适的位置并且放好,通过人工将棒料自动切割切割机本体、十字滑块等调整到合适的状态 ,这里所设计的移动棒料自动切割切割机是有轨移动切割棒料自动切割切割机,也就是说棒料自动切割切割机的自主性还跟不上工业发展的脚步。未来的发展趋势可分为以下三个方面:1 选择视觉传感器来进行传感跟踪:因为与图象处理方面相关的技术得到发展; 2 采用多传感信息融合技术以面对更为复杂的切割任务;3 控制技术由经典控制到向智能控制技术的发展:这也将是移动切割棒料自动切割切割机的控制所采用。1.3本课题研究的内容及方法1.3.1主要的研究内容在查阅了国内外大量的有关切割棒料自动切割切割机设计理论及相关知识的资料和文献基础上,综合考虑切割棒料自动切割切割机结构特点、具体作业任务特点以及切割棒料自动切割切割机的推广应用,分析确定使用三自由度关节型切割棒料自动切割切割机配合生产工序,实现自动化切割的目的。为了实现上述目标,本文拟进行的研究内容如下:1 根据现场作业的环境要求和棒料自动切割机本身的结构特点,确定棒料自动切割机整体设计方案。2 确定棒料自动切割机的性能参数,对初步模型进行静力学分析,根据实际情况选择电机。3 从所要功能的实现出发,完成棒料自动切割机各零部件的结构设计;4 完成主要零部件强度与刚度校核。1.3.2设计要求1 根据所要实现的功能,提出棒料自动切割切割机的整体设计方案;2 完成棒料自动切割切割机结构的详细设计;3 通过相关设计计算,完成电机选型;4 完成棒料自动切割切割机结构的设计;绘制棒料自动切割切割机结构总装配图、主要零件图。1.3.3关键的技术问题1 方案选择2整体的支撑架设计3机构设计 4 强度校核 2 棒料自动切割装配装置总体结构设计2.1设计的要求与数据要求:1、该装置为加工自动线上的一个工位,应考虑装置与自动线的配合与衔接(如高度、完成自动切割的时间等)。2、对切割装置的关键零件进行必要强度和刚度校核。3、要求能捡测棒料是否准确到位,若捡测棒料没有准确到位,及时发出反馈信息,调整棒料位置。4、要求根据棒料材质不同切割速度可调,并要求有自捡测功能。5、要求该装置有一定适应性(棒料直径尺寸等能在一定范围内变动),具体变动范围通过调研后,与老师协商确定。本文课题参数假定切割棒料直径为30-60电机功率为0.37 KW,本文选用减速电机作为输送机床的驱动装置。查SEW减速电机的规格表,选用如下减速电机。表3.2 选用的电机的详细参数电机额定功率Pm/kW输出转速na/r/min输出扭矩Ma/Nm减速机速比i输出轴许用径向载荷FRa/N使用系数SEW-fB减速机型号电机型号重量/kg0.37564722.528701.55DT71D4SF3714此型号的电机在一定程度上保证了驱动功率有一定的盈余,因数在电机起动时,若输送机床上有工件,则此时的起动功率会比平时工作时的功率要大,且减速电机本身还有一定的使用系数。切割片片选取切断能力为50 的切割片片,其规格为mm,选取切割片片的型号为TL-001型,其磨料为棕刚玉,粒度为20#。2.2 同步带传动计算2.2.1 同步带计算选型设计功率是根据需要传递的名义功率、载荷性质、原动机类型和每天连续工作的时间长短等因素共同确定的,表达式如下:式中需要传递的名义功率工作情况系数,按表2工作情况系数选取=1.7;表2.工作情况系数1) 确定带的型号和节距 可根据同步带传动的设计功率Pd和小带轮转速n1,由同步带选型图中来确定所需采用的带的型号和节距。 其中Pd=0.63kw,n1=56rpm。查表3-2-2表3-2-2选同步带的型号为H:,节距为:Pb=8.00mm1) 选择小带轮齿数z1,z2 可根据同步带的最小许用齿数确定。查表3-3-3得。 查得小带轮最小齿数14。实际齿数应该大于这个数据初步取值z1=34故大带轮齿数为:z2=iz1=1z1=34。 故z1=34,z2=34。 确定带轮的节圆直径d1,d2小带轮节圆直径d1=Pbz1/=8.0034/3.1486.53mm大带轮节圆直径d2=Pbz2/=8.0034/3.1486.53mm 验证带速v 由公式v=d1n1/60000计算得, svmax=40m/s,其中vmax=40m/s由表3-2-4查得。a) 确定带长和中心矩根据机械设计基础得 所以有:现在选取轴间间距为取224mm10、同步带带长及其齿数确定=() = =719.7mm11、带轮啮合齿数计算有在本次设计中传动比为1,所以啮合齿数为带轮齿数的一半,即=17。12、基本额定功率的计算查基准同步带的许用工作压力和单位长度的质量表4-3可以知道=2100.85N,m=0.448kg/m。 所以同步带的基准额定功率为=0.21KW表4-3 基准宽度同步带的许用工作压力和单位长度的质量13、计算作用在轴上力=71.6N2.2.2 同步带的主要参数(结构部分)1、同步带的节线长度 同步带工作时,其承载绳中心线长度应保持不变,因此称此中心线为同步带的节线,并以节线周长作为带的公称长皮,称为节线长度。在同步带传动中,带节线长度是一个重要参数。当传动的中心距已定时,带的节线长度过大过小,都会影响带齿与轮齿的正常啮合,因此在同步带标准中,对梯形齿同步带的各种哨线长度已规定公差值,要求所生产的同步带节线长度应在规定的极限偏差范围之内(见表4-4)。表4-4 带节线长度表2、带的节距Pb如图4-2所示,同步带相邻两齿对应点沿节线量度所得约长度称为同步带的节距。带节距大小决定着同步带和带轮齿各部分尺寸的大小,节距越大,带的各部分尺寸越大,承载能力也随之越高。因此带节距是同步带最主要参数在节距制同步带系列中以不同节距来区分同步带的型号。在制造时,带节距通过铸造模具来加以控制。梯形齿标准同步带的齿形尺寸见表4-5。3、带的齿根宽度 一个带齿两侧齿廓线与齿根底部廓线交点之间的距离称为带的齿根宽度,以s表示。带的齿根宽度大,则使带齿抗剪切、抗弯曲能力增强,相应就能传动较大的裁荷。图4-2 带的标准尺寸表4-5 梯形齿标准同步带的齿形尺寸4、带的齿根圆角 带齿齿根回角半径rr的大小与带齿工作时齿根应力集中程度有关t齿根圆角半径大,可减少齿的应力集中,带的承载能力得到提高。但是齿根回角半径也不宜过大,过大则使带齿与轮齿啮合时的有效接触面积城小,所以设计时应选适当的数值。5、带齿齿顶圆角半径八 带齿齿项圆角半径八的大小将影响到带齿与轮齿啮合时会否产生于沙。由于在同步带传动中,带齿与带轮齿的啮合是用于非共扼齿廓的一种嵌合。因此在带齿进入或退出啮合时,带齿齿顶和轮齿的顶部拐角必然会超于重叠,而产生干涉,从而引起带齿的磨损。因此为使带齿能顺利地进入和退出啮合,减少带齿顶部的磨损,宜采用较大的齿顶圆角半径。但与齿根圆角半径一样,齿顶圆角半径也不宜过大,否则亦会减少带齿与轮齿问的有效接触面积。 6、齿形角梯形带齿齿形角日的大小对带齿与轮齿的啮合也有较大影响。如齿形角霹过小,带齿纵向截面形状近似矩形,则在传动时带齿将不能顺利地嵌入带轮齿槽内,易产生干涉。但齿形角度过大,又会使带齿易从轮齿槽中滑出,产生带齿在轮齿顶部跳跃现象。2.2.3 同步带的设计在这里,我们选用梯形带。带的尺寸如表4-6。带的图形如图4-3。表4-6 同步带尺寸型号节距齿形角齿根厚齿高齿根圆角半径齿顶圆半径H840。21.02图4-3 同步带2.2.4 同步带轮的设计同步带轮的设计的基本要求1、保证带齿能顺利地啮入与啮出由于轮齿与带齿的啮合同非共规齿廓啮合传动,因此在少带齿顶部与轮齿顶部拐角处的干涉,并便于带齿滑入或滑出轮齿槽。2、轮齿的齿廊曲线应能减少啮合变形,能获得大的接触面积,提高带齿的承载能力即在选探轮齿齿廓曲线时,应使带齿啮入或啮出时变形小,磨擦损耗小,并保证与带齿均匀接触,有较大的接触面积,使带齿能承受更大的载荷。3、有良好的加了工艺性 加工工艺性好的带轮齿形可以减少刀具数量与切齿了作员,从而可提高生产率,降低制造成本。4、具有合理的齿形角齿形角是决定带轮齿形的重要的力学和几何参数,大的齿形角有利于带齿的顺利啮入和啮出,但易使带齿产生爬齿和跳齿现象;而齿形角过小,则会造成带齿与轮齿的啮合干涉,因此轮齿必须选用合理的齿形角。同步带轮的设计结果同步带轮用梯形齿,其图形如图4-4。 图 4-4 同步带轮2.3 夹紧装置设计 夹紧机构不但在切割之前机械手抓能够根据事先收到的信号准确地运动到每个工位,而且在切割过程中要夹紧运动着的铸铁棒,使切割片与铸棒同步。夹紧部分是由气缸推动机械手实现夹紧和放松的。这部分的两种可行性方案是:一是用一个机械手同时负责夹紧两根铸棒,根据需要对被切割的那条进行夹紧。二是用两个机械手,每个机械手负责夹紧一根铸棒。第一种方案中,机械手可通过一个二位气缸和一个三位气缸实现对铸棒的夹紧。第二种方案中,每个机械手都需要两个二位气缸来实现对铸棒的夹紧。考虑到第一种方案设计工作量小,安装方便,而且控制简单,所以优先使用第一种方案。 图2-1 夹紧部分原理图夹紧部分原理如图2-1所示,夹紧气缸能使夹紧机械手夹紧或放松工件,当活塞向右移动时,机械手夹紧工件;当活塞向左移动时,机械手放松工件。横向行走气缸推动工作台左右移动,能控制机械手使之夹紧左边或右边的工件,从而对夹紧的工件进行切割。纵向行走的作用是当完成一次切割过程完成时,推动工作台使之恢复到初始位置。整个工作过程都PLC由控制实现。3 X结构及传动设计表 3-1滚珠丝杆副支承支承方式简图特点一端固定一端自由结构简单,丝杆的压杆的稳定性和临界转速都较低设计时尽量使丝杆受拉伸。这种安装方式的承载能力小,轴向刚度底,仅仅适用于短丝杆。一端固定一端游动需保证螺母与两端支承同轴,故结构较复杂,工艺较困难,丝杆的轴向刚度与两端相同,压杆稳定性和临界转速比同长度的较高,丝杆有膨胀余地,这种安装方式一般用在丝杆较长,转速较高的场合,在受力较大时还得增加角接触球轴承的数量,转速不高时多用更经济的推力球轴承代替角接触球轴承。两端固定只有轴承无间隙,丝杆的轴向刚度为一端固定的四倍。一般情况下,丝杆不会受压,不存在压杆稳定问题,固有频率比一端固定要高。可以预拉伸,预拉伸后可减少丝杆自重的下垂和热膨胀的问题,结构和工艺都比较困难,这种装置适用于对刚度和位移精度要求较高的场合。3.1 X向滚珠丝杆副的选择滚珠丝杆副就是由丝杆、螺母和滚珠组成的一个机构。他的作用就是把旋转运动转和直线运动进行相互转换。丝杆和螺母之间用滚珠做滚动体,丝杠转动时带动滚珠滚动。设X向最大行程为300mm,最快进给速度为18m/min,主轴箱大概质量为50kg,工作台大概质量为80kg,移动部件大概质量为30kg,工作台最大行程为300mm。3.1.1导程确定电机与丝杆通过联轴器连接,故其传动比i=1, 选择电机Y系列异步电动机的最高转速,则丝杠的导程为 取Ph=12mm3.1.2确定丝杆的等效转速基本公式 最大进给速度是丝杆的转速 最小进给速度是丝杆的转速 丝杆的等效转速 式中取故3.1.3估计工作台质量及负重 主轴箱重量 工作台重量 移动部件重量 3.1.4确定丝杆的等效负载工作负载是指机床工作时,实际作用在滚珠丝杆上的轴向压力,他的数值用进给牵引力的实验公式计算。选定导轨为滑动导轨,取摩擦系数为0.03,K为颠覆力矩影响系数,一般取1.11.5,本课题中取1.3,则丝杆所受的力为其等效载荷按下式计算(式中取,)3.1.5确定丝杆所受的最大动载荷fw-负载性质系数,(查表:取fw=1.2)ft-温度系数(查表:取ft=1)fh-硬度系数(查表:取fh =1)fa-精度系数(查表:取fa =1)fk-可靠性系数(查表:取fk =1)Fm-等效负载nz-等效转速Th -工作寿命,取丝杆的工作寿命为15000h由上式计算得Car=17300N表3-1-1各类机械预期工作时间Lh表3-1-2精度系数fa表3-1-3可靠性系数fk表3-1-4负载性质系数fw3.1.6精度的选择滚珠丝杠副的精度对电气机床的定位精度会有影响,在滚珠丝杠精度参数中,导程误差对机床定位精度是最明显的。一般在初步设计时设定丝杠的任意300行程变动量应小于目标设定定位精度值的1/31/2,在最后精度验算中确定。,选用滚珠丝杠的精度等级X轴为13级(1级精度最高),Z轴为25级,考虑到本设计的定位精度要求及其经济性,选择X轴Y轴精度等级为3级,Z轴为4级。3.1.7选择滚珠丝杆型号 计算得出Ca=Car=17.3KN,则Coa=(23)Fm=(34.651.9)KN公称直径Ph=12mm则选择FFZD型内循环浮动返向器,双螺母垫片预紧滚珠丝杆副,丝杆的型号为FFZD40103。公称直径 d0=40mm 丝杆外径d1=39.5mm 钢球直径dw=7.144mm 丝杆底径d2=34.3mm 圈数=3圈 Ca=30KN Coa=66.3KN 刚度kc=973N/m3.2校核滚珠丝杆副的拉压系统刚度影响系统的定位精度和轴向拉压震动固有频率,其扭转刚度影响扭转固有频率。承受轴向负荷的滚珠丝杆副的拉压系统刚度KO有丝杆本身的拉压刚度KS,丝杆副内滚道的接触刚度KC,轴承的接触刚度Ka,螺母座的刚度Kn,按不同支撑组合方式计算而定。3.2.1 临界压缩负荷验证丝杆的支撑方式对丝杆的刚度影响很大,采用一端固定一端支撑的方式。临界压缩负荷按下列计算:式中E-材料的弹性模量E钢=2.1X1011(N/m2)LO-最大受压长度(m)K1-安全系数,取K1=1.3Fmax-最大轴向工作负荷(N)f1-丝杆支撑方式系数:f1=15.1I=丝杆最小截面惯性距(m4)式中do-是丝杆公称直径(mm)dw-滚珠直径(mm),丝杆螺纹不封闭长度Lu=工作台最大行程+螺母长度+两端余量Lu=300+148+20X2=488mm支撑距离LO应该大于丝杆螺纹部分长度Lu,选取LO=620mm代入上式计算得出Fca=5.8X108N可见FcaFmax,临界压缩负荷满足要求。3.2.2临界转速验证滚珠丝杠副高速运转时,需验算其是否会发生共振的最高转速,要求丝杠的最高转速: 式中:A-丝杆最小截面:A=-丝杠内径,单位;P-材料密度p=7.85*103(Kg/m)-临界转速计算长度,单位为,本设计中该值为=148/2+300+(620-488)/2=440mm-安全系数,可取=0.8fZ-丝杠支承系数,双推-简支方式时取18.9经过计算,得出= 6.3*104,该值大于丝杠临界转速,所以满足要求。3.2.3丝杆拉压振动与扭转振动的固有频率 丝杠系统的轴向拉压系统刚度Ke的计算公式式中 A丝杠最小横截面,;螺母座刚度KH=1000N/m。当导轨运动到两极位置时,有最大和最小拉压刚度,其中,L植分别为750mm和100mm。经计算得:式中 Ke 滚珠丝杠副的拉压系统刚度(N/m); KH螺母座的刚度(N/m);KH=1000 N/mKc丝杠副内滚道的接触刚度(N/m);KS丝杠本身的拉压刚度(N/m);KB轴承的接触刚度(N/m)。经计算得丝杠的扭转振动的固有频率远大于1500r/min,能满足要求。3.3电机的选择步进电机是一种能将数字输入脉冲转换成旋转或直线增量运动的电磁执行元件。每输入一个脉冲电机转轴步进一个距角增量。电机总的回转角与输入脉冲数成正比例,相应的转速取决于输入脉冲的频率。步进电机具有惯量低、定位精度高、无累计误差、控制简单等优点,所以广泛用于机电一体化产品中。选择步进电动机时首先要保证步进电机的输出功率大于负载所需的功率,再者还要考虑转动惯量、负载转矩和工作环境等因素。3.3.1电机轴的转动惯量a、回转运动件的转动惯量上式中:d直径,丝杆外径d=39.5mmL长度=1mP钢的密度=7800经计算得b、X向直线运动件向丝杆折算的惯量上式中:M质量 X向直线运动件M=160kgP丝杆螺距(m)P=0.001m经计算得c、联轴器的转动惯量查表得 因此3.3.2电机扭矩计算a、折算至电机轴上的最大加速力矩上式中:J=0.0028kg/m2ta加速时间 KS系统增量,取15s-1,则ta=0.2s经计算得b、折算至电机轴上的摩擦力矩上式中:F0导轨摩擦力,F0=Mf,而f=摩擦系数为0.02,F0=Mgf=32NP丝杆螺距(m)P=0.001m传动效率,=0.90I传动比,I=1经计算得c、折算至电机轴上的由丝杆预紧引起的附加摩擦力矩上式中P0滚珠丝杆预加载荷1500N0滚珠丝杆未预紧时的传动效率为0.9经计算的T0=0.05NM则快速空载启动时所需的最大扭矩 根据以上计算的扭矩及转动惯量,选择电机型号为SIEMENS的IFT5066,其额定转矩为6.7。584 Y向结构设计4.1 Y轴滚动导轨副的计算、选择根据给定的工作载荷Fz和估算的Wx和Wy计算导轨的静安全系数fSL=C0/P,式中:C0为导轨的基本静额定载荷,kN;工作载荷P=0.5(Fz+W); fSL=1.03.0(一般运行状况),3.05.0(运动时受冲击、振动)。根据计算结果查有关资料初选导轨:因系统受中等冲击,因此取根据计算额定静载荷初选导轨:选择汉机江机床厂HJG-D系列滚动直线导轨,其型号为:HJG-D25基本参数如下:额定载荷/N静态力矩/N*M滑座重量导轨重量导轨长度动载荷静载荷L(mm)17500260001981982880.603.1760滑座个数单向行程长度每分钟往复次数M40.64导轨的额定动载荷N依据使用速度v(m/min)和初选导轨的基本动额定载荷 (kN)验算导轨的工作寿命Ln:额定行程长度寿命: 导轨的额定工作时间寿命: 导轨的工作寿命足够.4.2 滚珠丝杠计算、选择初选丝杠材质:CrWMn钢,HRC5860,导程:l0=5mm强度计算丝杠轴向力:(N)其中:K=1.15,滚动导轨摩擦系数f=0.0030005;在车床车削外圆时:Fx=(0.10.6)Fz,Fy=(0.150.7)Fz,可取Fx=0.5Fz,Fy=0.6Fz计算。取f=0.004,则:寿命值:,其中丝杠转速(r/min)最大动载荷:式中:fW为载荷系数,中等冲击时为1.21.5;fH为硬度系数,HRC58时为1.0。查表得中等冲击时则:根据使用情况选择滚珠丝杠螺母的结构形式,并根据最大动载荷的数值可选择滚珠丝杠的型号为: CM系列滚珠丝杆副,其型号为:CM2005-5。其基本参数如下:其额定动载荷为14205N 足够用.滚珠循环方式为外循环螺旋槽式,预紧方式采用双螺母螺纹预紧形式.滚珠丝杠螺母副的几何参数的计算如下表名称计算公式结果公称直径20mm螺距mm接触角钢球直径3.175mm螺纹滚道法向半径1.651mm偏心距0.04489mm螺纹升角螺杆外径19.365mm螺杆内径16.788mm螺杆接触直径17.755mm螺母螺纹外径23.212mm螺母内径(外循环)20.7mm(1) 传动效率计算丝杠螺母副的传动效率为:式中:=10,为摩擦角;为丝杠螺旋升角。(2) 稳定性验算丝杠两端采用止推轴承时不需要稳定性验算。(3) 刚度验算滚珠丝杠受工作负载引起的导程变化量为:(cm)Y向所受牵引力大,故用Y向参数计算丝杠受扭矩引起的导程变化量很小,可忽略不计。导程变形总误差为E级精度丝杠允许的螺距误差 =15m/m。4.3 步进电机惯性负载的计算根据等效转动惯量的计算公式,有:(1)等效转动惯量的计算折算到步进电机轴上的等效负载转动惯量为:式中:为折算到电机轴上的惯性负载;为步进电机轴的转动惯量;为齿轮的转动惯量;为齿轮的转动惯量;为滚珠丝杠的转动惯量;为移动部件的质量。对钢材料的圆柱零件可以按照下式进行估算:式中为圆柱零件直径,为圆柱零件的长度。所以有:电机轴的转动惯量很小,可以忽略,所以有:步进电机的选用()步进电机启动力矩的计算设步进电机的等效负载力矩为,负载力为,根据能量守恒原理,电机所做的功与负载力所做的功有如下的关系:式中为电机转角,为移动部件的相应位移,为机械传动的效率。若取,则,且。所以:式中:为移动部件负载(N),G为移动部件质量(N),为与重力方向一致的作用在移动部件上的负载力(N),为导轨摩擦系数,为步进电机的步距角(rad),T为电机轴负载力矩(N.cm)。取=0.3(淬火钢滚珠导轨的摩擦系数),.8,=279.23。考虑到重力影响,向电机负载较大,因此1200,所以有:考虑到启动时运动部件惯性的影响,则启动转矩:取系数为.,则: 对于工作方式为三相拍的步进电机: () 步进电机的最高工作频率为使电机不产生失步空载启动频率要大于最高运行频率,同时电机最大静转矩要足够大,查表选择两个90BF001型三相反应式步进电机.电机有关参数如下:型号主要技术参数相数步距角电压(V)相电流(A)最大静转矩(n.m)空载启动频率空载运行频率分配方式90BF00140.98073.92200080004相8拍外形尺寸(mm)重量kg转子转动惯量Kg.m外直径长度轴直径9014594.517645 主轴组件要求与设计计算主轴组件是特殊的执行件,它的功用是支承并带动切割片旋转,完成表面成形运动,同时还起传递运动和扭矩、承受切削力和驱动力等载荷的作用。由于主轴组件的工作性能直接影响到特殊的加工质量和生产率,因此它是特殊中的一个关键组件。主轴和一般传动轴的相同点是,两者都传递运动、扭矩并承受传动力,都要保证传动件和支承的正常工件条件,但主轴直接承受切削力,还要带动工件或刀具,实现表面成形运动,因此对主轴有较高的要求。5.1 主轴的基本要求5.1.1 旋转精度主轴的旋转精度是指主轴在手动或低速、空载时,主轴前端定位面的径向跳动r、端面跳动a和轴向窜动值o。如图5-1所示:图中实线表示理想的旋转轴线,虚线表示实际的旋转轴线。当主轴以工作转速旋转时,主轴回转轴线在空间的漂移量即为运动精度。主轴组件的旋转精度取决于部件中各主要件(如主轴、轴承及支承座孔等)的制造精度和装配、调整精度;运动精度还取决于主轴的转速、轴承的性能和润滑以及主轴部件的动态特性。各类通用特殊主轴部件的旋转精度已在特殊精度标准中作了规定,专用特殊主轴部件的旋转精度则根据工件精度要求确定。图5-1 主轴的旋转误差5.1.2 刚度主轴组件的刚度K是指其在承受外载荷时抵抗变形的能力,如图5-2所示,即K=F/y(单位为N/m),刚度的倒数y/F称为柔度。主轴组件的刚度,是主轴、轴承和支承座的刚度的综合反映,它直接影响主轴组件的旋转精度。显然,主轴组件的刚度越高,主轴受力后的变形就越小,如若刚度不足,在加工精度方面,主轴前端弹性变形直接影响着工件的精度;在传动质量方面,主轴的弯曲变形将恶化传动齿轮的啮合状况,并使轴承产生侧边压力,从而使这些零件的磨损加剧,寿命缩短;在工件平稳性方面,将使主轴在变化的切削力和传动力等作用下,产生过大的受迫振动,并容易引起切削自激振动,降低了工件的平稳性。图5-2 主轴组件静刚度主轴组件的刚度是综合刚度,影响主轴组件刚度的因素很多,主要有:主轴的结构尺寸、轴承的类型及其配置型式、轴承的间隙大小、传动件的布置方式、主轴组件的制造与装配质量等。5.1.3 抗振性主轴组件的抗振性是指其抵抗受迫振动和自激振动而保持平稳运转的能力。在切削过程中,主轴组件不仅受静载荷的作用,同时也受冲击载荷和交变载荷的作用,使主轴产生振动。如果主轴组件的抗振性差,工作时容易产生振动,从而影响工件的表面质量,降低刀具的耐用度和主轴轴承的寿命,还会产生噪声影响工作环境。随着特殊向高精度、高效率方向发展,对抗振性要求越来越高。评价主轴组件的抗振性,主要考虑其抵抗受迫振动和自激振动能力的大小。5.1.4 温升和热变形主轴组件工作时因各种相对运动处的摩擦和搅油等而发热,产生了温升,温升使主轴组件的形状和位置发生畸变,称为热变形。热变形应以主轴组件运转一定时间后各部分位置的变化来度量。主轴组件温升和热变形,使特殊各部件间相对位置精度遭到破坏,影响工件加工精度,高精度特殊尤为严重;热变形造成主轴弯曲,使传动齿轮和轴承的工作状态变坏;热变形还使主轴和轴承,轴承与支承座之间已调整好的间隙和配合发生变化,影响轴承正常工作,间隙过小将加速齿轮和轴承等零件的磨损,严重时甚至会发生轴承抱轴现象。影响主轴组件温升、热变形的主要因素有:轴承的类型和布置方式,轴承间隙及预紧力的大小,润滑方式和散热条件等。5.1.5 耐磨性主轴组件的耐磨性是指长期保持其原始精度的能力,即精度的保持性。因此,主轴组件各个滑动表面,包括主轴端部定位面、锥孔,与滑动轴承配合的轴颈表面,移动式主轴套筒外圆表面等,都必须具有很高的硬度,以保证其耐磨性。为了提高主轴组件的耐磨性,应该正确地选用主轴和滑动轴承的材料及热处理方法、润滑方式,合理调整轴承间隙,良好的润滑和可靠的密封。5.2 主轴组件的布局主轴组件的设计,必须保证满足上述的基本要求,从而从全局出发,考虑主轴组件的布局。特殊主轴有前、后两个支承和前、中、后三个支承两种,以前者较多见。两支承主轴轴承的配置型式,包括主轴轴承的选型、组合以及布置,主要根据对所设计主轴组件在转速、承载能力、刚度以及精度等方面的要求,并考虑轴承的供应、经济性等具体情况,加以确定。在选择时,具体有以下要求:(1)适应刚度和承载能力的要求主轴轴承选型应满足所要求的刚度和承载能力。径向载荷较大时,可选用滚子轴承;较小时,可选用球轴承。双列滚动轴承的径向刚度和承载能力,比单列的大。同一支承中采用多个轴承的支承刚度和承载能力,比采用单个轴承大。一般来说,前支承的刚度,应比后支承的大。因为前支承刚度对主轴组件刚度的影响要比后支承的大。表2-1所示为滚动轴承和滑动轴承的比较。表2-1 滚动轴承和滑动轴承的比较基本要求滚动轴承滑动轴承动压轴承静压轴承旋转精度精度一般或较差。可在无隙或预加载荷下工作。精度也可以很高,但制造困难单油楔轴承一般,多油楔轴承较高可以很高刚度仅与轴承型号有关,与转速、载荷无关,预紧后可提高一些随转速和载荷升高而增大与节流形式有关,与载荷转速无关承载能力一般为恒定值,高速时受材料疲劳强度限制随转速增加而增加,高速时受温升限制与油腔相对压差有关,不计动压效应时与速度无关抗振性能不好,阻尼系数D=0.029较好,阻尼系数D=0.055很好,阻尼系数D=0.4速度性能高速受疲劳强度和离心力限制,低中速性能较好中高速性能较好。低速时形不成油漠,无承载能力适应于各种转速摩擦功耗一般较小,润滑调整不当时则较大f=0.0020.008较小f=0.0010.08本身功耗小,但有相当大的泵功耗f=0.00050.001噪声较大无噪声本身无噪声,泵有噪声寿命受疲劳强度限制在不频繁启动时,寿命较长本身寿命无限,但供油系统的寿命有限(2)适应转速要求由于结构和制造方面的原因,不同型号和规格的轴承所允许的最高转速是不同的。轴承的规格越大,精度等级越低,允许的最高转速越低。在承受径向载荷的轴承当中,圆柱滚子轴承的极限转速,比圆锥滚子轴承的高。在承受轴向载荷的轴承当中,向心推力轴承的极限转速最高;推力球轴承的次之;圆锥滚子轴承的最低,但承载能力与上述次序相反。因此,应综合考虑转速和承载能力两方面要求来选择轴承型式。(3)适应精度的要求起止推作用的轴承的布置有三种方式:前端定位止推轴承集中布置在前支承;后端定位集中布置在后支承;两端定位分别布置在前、后支承。采用前端定位时,主轴受热变形向后延伸,不影响轴向定位精度,但前支承结构复杂,调整轴承间隙较不便,前支承处发热量较大;后端定位的特点与前述的相反;两端定位时,主轴受热伸长后,轴承轴向间隙的改变较大,若止推轴承布置在径向轴承内侧,主轴可能因热膨胀而弯曲。(4)适应结构的要求当要求主轴组件在性能上有较高的刚度和一定的承载能力,而在结构上径向尺寸要紧凑时,则可在一个支承(尤其是前支承)中配置两个或两个以上的轴承。对于轴间距很小的多主轴特殊,由于结构限制,宜采用滚针轴承来承受径向载荷,用推力球轴承来承受轴向载荷,并使两轴承错开排列。(5)适应经济性要求确定主轴轴承配置型式,除应考虑满足性能和结构方面要求外,还应作经济性分析,使经济效果好。在中速和大载荷情况下,采用圆锥滚子轴承要比采用向心轴承和推力轴承组合配置型式成本低,因为前者节省了两个轴承,而且箱体工艺性较好。综合考虑以上因素,本设计的主轴采用前、后支承的两支承主轴,前支承采用双列向心短圆柱滚子轴承和推力球轴承的组合,D级精度;后支承采用圆柱滚子轴承,E级精度。其中前支承的双列圆柱滚子轴承,滚子直径小,数量多(5060个),具有较高的刚度;两列滚子交错布置,减少了刚度的变化量;外圈无挡边,加工方便;轴承内孔为锥孔,锥度为1:12,轴向移动内圈使之径向变形,调整径向间隙和预紧;黄铜实体保持架,利于轴承散热。前支承的总体特点是:主轴静刚度好,回转精度高,温升小,径向间隙可以调整,易保持主轴精度,但由于前支承结构比较复杂,前、后支承的温升不同,热变形较大,此外,装配、调整比较麻烦。5.3 主轴结构的初步拟定主轴的结构主要决定于主轴上所安装的刀具、夹具、传动件、轴承和密封装置等的类型、数目、位置和安装定位的方法,同时还要考虑主轴加工和装配的工艺性,一般在特殊主轴上装有较多的零件,为了满足刚度要求和能得到足够的止推面以及便于装配,常把主轴设计成阶梯轴,即轴径从前轴颈起向后依次递减。主轴是空心的或者是实心的,主要取决于特殊的类型。此次设计的主轴,也设计成阶梯形,同时,在满足刚度要求的前提下,设计成空心轴,以便通过刀具拉杆。主轴端部系指主轴前端。它的形状决定于特殊的类型、安装夹具或刀具的形式,并应保证夹具或刀具安装可靠、定位准确,装卸方便和能传递一定的扭矩。5.4 主轴的材料与热处理主轴材料主要根据刚度、载荷特点、耐磨性和热处理变形大小等因素选择。主轴的刚度与材料的弹性模量E值有关,钢的E值较大(2.110N/cm左右),所以,主轴材料首先考虑用钢料。钢的弹性模量E的数值和钢的种类和热处理方式无关,即不论是普通钢或合金钢,其弹性模量E基本相同。因此在选择钢料时应首先选用价格便宜的中碳钢(如45钢),只有在载荷特别重和有较大的冲击时,或者精密特殊主轴需要减少热处理后的变形时,或者轴向移动的主轴需要保证其耐磨性时,才考虑选用合金钢。当主轴轴承采用滚动轴承时,轴颈可不淬硬,但为了提高接触刚度,防止敲碰损伤轴颈的配合表面,不少45钢主轴轴颈仍进行高频淬火(HRC4854).有关45钢主轴热处理情况如下表5.2所列:表5.2 使用滚动轴承的45钢主轴热处理等参数工 作 条 件使 用 机 床材 料 牌 号热 处 理硬 度常 用代 用轻中负载车、钻、铣、磨床主轴4550调质HB220250轻中负载局部要求高硬度磨床的切割片轴4550高频淬火HRC5258轻中负载PV40(Nm/cms)车、钻、铣、磨床的主轴4550淬火回火高频淬火HRC4250HRC5258此次设计的特殊主轴,考虑到主轴材料的选择原则,选用价格便宜的中碳钢(45钢)。查表2-2中,因工作中承受轻、中负荷,且要求局部高硬度,故热处理采用高频淬火,HRC5258。5.5 主轴的技术要求主轴的精度直接影响到主轴组件的旋转精度。主轴和轴承、齿轮等零件相连接处的表面几何形状误差和表面粗糙度,关系到接触刚度,零件接触表面形状愈准确、表面粗糙度愈低,则受力后的接触变形愈小,亦即接触刚度愈高。因此,对主轴设计必须提出一定的技术要求。(1)轴颈 此次设计的主轴,应首先考虑轴颈。支承轴颈是主轴的工作基面、工艺基面和测量基面。主轴工作时,以轴颈作为工作基面进行旋转运动;加工主轴时,为了保证锥孔中心和轴颈中心同轴,一般都以轴颈作为工艺基面来最后精磨锥孔;在检查主轴精度时,以轴颈作为测量基面来检查各部分的同轴度和垂直度。采用滚动轴承时,轴颈的精度必须与轴承的精度相适应。轴颈的表面粗糙度和硬度,将影响其与滚动轴承的配合质量。对于普通精度级特殊的主轴,其支承轴颈的尺寸精度为IT5,轴颈的几何形状允差(圆度、圆柱度等)通常应小于直径公差的1/41/2。(2)内锥孔 内锥孔是安装刀具或顶尖的定位基面。在检验特殊精度时,它是代表主轴中心线的基准,用来检查主轴与其他部件的相互位置精度,如主轴与导轨的平行度等。由于刀具和顶尖要经常装拆,故内锥孔必须耐磨。锥孔与轴承轴颈的同轴度,一般以锥孔端部及其相距100300毫米处对轴颈的径向跳动表示;其形状误差用标准检验锥着色检查的接触面积大小来检验,此乃综合指标;还要求一定的表面粗糙度和硬度等。5.6 主轴直径的选择主轴直径对主轴组件刚度的影响很大,直径越大,主轴本身的变形和轴承变形引起的主轴前端位移越小,即主轴组件的刚度越高。但主轴前端轴颈直径D1越大,与之相配的轴承等零件的尺寸越大,要达到相同的公差则制造越困难,重量也增加。同时,加大直径还受到轴承所允许的极限转速的限制,甚至为特殊结构所不允许。通常,主轴前轴颈直径D1可根据传递功率,并参考现有同类特殊的主轴轴颈尺寸确定。查金属切削特殊设计第506页表5-12中,几种常见的通用特殊钢质主轴前轴颈的直径D1,可供参考,如下表5-3所示:特殊,查上表中对应项,初取D1= D2=30。表5-3 主轴前轴颈直径D1的选择机床机床功率 (千瓦)1.47.37.4111114.7车床608070907010595130110145140165铣床5090609060957510090105100115外圆磨床5090557070807590751005.7 主轴前后轴承的选择根据前述关于轴承的选择原则,查金属切削设计简明手册第375页,选取主轴前支承的36206是旧型号,新型号是7206C,即接触角为15的角接触球轴承。图5-6 轴承结构参数及安装尺寸5.8 轴承的选型及校核滚动轴承的选择包括轴承类型选择、轴承精度等级选择和轴承尺寸选择。轴承类型选择适当与否,直接影响轴承寿命以至机器的工作性能。选择轴承类型时应当分析比较各类轴承的特性,并参照同类机器中的轴承使用经验。 在选择轴承类型时,首先要考虑载荷的大小、方向以及轴的转速。一般说来,球轴承便宜,在载荷较小时,宜优先选用。滚子轴承的承载能力比球轴承大,而且能承受冲击载荷,因此在重载荷或受有振动、冲击载荷时,应考虑选用滚子轴承。但要注意滚子轴承对角偏斜比较敏感。当主要承受径向载荷时,应选用向心轴承。当承受轴向载荷而转速不高时,可选用推力轴承;如转速较高,可选用角接触球轴承。当同时承受径向裁荷和轴向载荷时,若轴向载荷较小,可选用向心球轴承或接触角不大的角接触球轴承;若轴向载荷较大,而转速不高,可选用推力轴承和向心轴承的组合方式,分别承受轴向载荷和径向载荷;当轴向载荷较大,且转速较高时,则应选用接触角较大的角接触轴承。各类轴承适用的转速范围是不相同的,在机械设计手册中列出了各类轴承的极限转速。一般应使轴承在低于极限转速下运转。向心球轴承、角接触球轴承和短圆柱痞子轴承的极限转速较高。适用于较高转速场合。推力轴承的极限转速较低只能用于较低转速场合。其次,在选择轴承类型时还需考虑安装尺寸限制、装拆要求,以及轴承的调心件能和风度,一般球轴承外形尺寸较大,滚子轴承较小,滚针轴承的径向尺寸最小而轴向尺寸较大,此外,不同系列的轴承,其外形尺寸也不相同。选择轴承一般应根据机械的类型、工作条件、可靠性要求及轴承的工作转速n,预先确定一个适当的使用寿命Lb (用工作小时表示),再进行额定动裁荷和额定静载荷的计算。对于转速较高的轴承(n10rmin),可按基本额定动载荷计算值选择轴承,然后校核其额定静载荷是否满足要求。当轴承可靠性为90、轴承材料为常规材料并在常规条件下运转时,取500h作为额定寿命的基准,同时考虑温度、振动、冲击等变化,则轴承基本额定动载荷可按下式进行简化计算。C基本额定动载荷计算值,N;P当量动载荷,N;fh寿命因数;1fn速度因数;0.822fm力矩载荷因数,力矩载荷较小时取1.5,较大时取2;fd冲击载荷因数;1.5fT温度因数;1CT轴承尺寸及性能表中所列径向基本额定动载荷,N;查文献3中的表6-2-8至6-2-12,得,fh=1;fn=0.822;fm=1.5;fd=1.5;fT=1。在本输送装置中,可以假设轴承只承受径向载荷,则当量动载荷为:P=XFr+YFa查文献3的表6-2-18,得,X=1,Y=0;所以,P=Fr=1128N。由以上可得:本输送机中的轴承承受的载荷多为径向载荷,所以选取深沟球轴承,查文献6的附表6-1,并考虑轴的外径,选取轴承6305-RZ,其具体参数为:内径d=25mm,外径D=62mm,基本额定载荷,基本额定静载荷,极限速度为10000r/min,质量为0.219kg。然后校核该轴承的额定静载荷。额定静载荷的计算公式为:式中:基本额定静载荷计算值,N; 当量静载荷,N;安全因数轴承尺寸及性能表中所列径向基本额定静载荷,N。查文献3的表6-2-14知,对于深沟球轴承,其当量静载荷等于径向载荷。查文献3的表6-2-14知,安全系数则轴承的基本额定静载荷为:由上式可知,选取的轴承符合要求。5.9 主轴前端悬伸量主轴前端悬伸量a指的是主轴前支承支反力的作用点到主轴前端受力作用点之间的距离,它对主轴组件刚度的影响较大。悬伸量越小,主轴组件刚度越好。主轴前端悬伸量a取决于主轴端部的结构形状及尺寸,一般应按标准选取,有时为了提高主轴刚度或定心精度,也可不按标准取。另外,主轴前端悬伸量a还与前支承中轴承的类型及组合型式、工件或夹具的夹紧方式以及前支承的润滑与密封装置的结构尺寸等有关。因此,在满足结构要求的前提下,应尽可能减小悬伸量a,以利于提高主轴组件的刚度。初算时,可查金属切削特殊设计第158页,如下表5-4所示:表5-4 主轴的悬伸量与直径之比类型机 床 和 主 轴 的 类 型a/ D1通用和精密车床,自动车床和短主轴端铣床,用滚动轴承支承,适用于高精度和普通精度要求0.61.5中等长度和较长主轴端的车床和铣床,悬伸量不太长(不是细长)的精密镗床和内圆磨,用滚动和滑动轴承支承,适用于绝大部分普通生产的要求1.252.5孔加工特殊,专用加工细长深孔的特殊,由加工技术决定需要有长的悬伸刀杆或主轴可移动,由于切削较重而不适用于有高精度要求的特殊2.5根据上表所列,所设计的特殊属于型,所以取a/ D1为1.252.5,即:a=(1.252.5)D1=(1.252.5)30=37.575初取a=45。5.10 主轴支承跨距主轴支承跨距L是指主轴前、后支承支承反力作用点之间的距离。合理确定主轴支承跨距,可提高主轴部件的静刚度。可以证明,支承跨距越小,主轴自身的刚度越大,弯曲变形越小,但支承的变形引起的主轴前端的位移量将增大;支承跨距大,支承的变形引起的主轴前端的位移量较小,但主轴本身的弯曲变形将增大。可见,支承跨距过大或过小都会降低主轴部件的刚度。有关资料对合理跨距选择的推荐值可作参考:(1) L=(45)D1(2) L=(35)a,用于悬伸长度较小时;(3) L=(12)a,用于悬伸长度较大时。根据此次设计的特殊刚性主轴的悬伸量较大,取L2.5a为宜。即此次设计的主轴两支承的合理跨距L2.5a=2.5120=300初取L=280。5.11 主轴结构图根据以上的分析计算,可初步得出主轴的结构如图5-7所示:图5-7 主轴结构图5.12 主轴组件的验算主轴在工作中的受力情况严重,而允许的变形则很微小,决定主轴尺寸的基本因素是所允许的变形的大小,因此主轴的计算主要是刚度的验算,与一般轴着重于强度的情况不一样。通常能满足刚度要求的主轴也能满足强度的要求。刚度乃是载荷与弹性变形的比值。当载荷一定时,刚度与弹性变形成反比。因此,算出弹性变形量后,很容易得到静刚度。主轴组件的弹性变形计算包括:主轴端部挠度和主轴倾角的计算。3.12.1 支承的简化对于两支承主轴,若每个支承中仅有一个单列或双列滚动轴承,或者有两个单列球轴承,则可将主轴组件简化为简支梁,如下图5-8所示;若前支承有两个以上滚动轴承,可认为主轴在前支承处无弯曲变形,可简化为固定端梁,如图5-9所示:图5-8 主轴组件简化为简支梁图5-9 主轴组件简化为固定端梁此次设计的主轴,前支承选用了一个双列向心短圆柱滚子轴承和两个推力球轴承作为支承,即可认为主轴在前支承处无弯曲变形,可简化为上图2-9所示。3.12.2 主轴的挠度查材料力学I第188页的表6.1,对图5-9作更进一步的分析,如下图5-10所示:根据图5-10,可得此时的最大挠度=其中,F主轴前端受力。此处,F=F=1213.1NlA、B之间的距离。此处,l=a=12cm图5-10 固定端梁在载荷作用下的变形E主轴材料的弹性模量。45钢的E=2.110N/cmI主轴截面的平均惯性矩。当主轴平均直径为D,内孔直径为d时,I=。此处,D=35故可计算出,主轴端部的最大挠度:=-1.8710 mm3.12.3 主轴倾角主轴上安装主轴和安装传动齿轮处的倾角,称为主轴的倾角。此次设计的主轴主要考虑主轴前支承处的倾角。若安装轴承处的倾角太大,会破坏轴承的正常工作,缩短轴承的使用寿命。根据图2-10,可得此时的最大倾角=其中,F主轴前端受力。此处,F=Fz=1213.1NlA、B之间的距离。此处,l=a=12cmE主轴材料的弹性模量。45钢的E=2.110N/cmI主轴截面的平均惯性矩。当主轴平均直径为D,内孔直径为d时,I=。此处,D=133故可计算出,主轴倾角为:=-2.310 rad查特殊设计第一册中机械部分的第670页,可知:当x0.0002L mm0.001 rad时,刚性主轴的刚度满足要求。此处的x,即为最大挠度和最大倾角,L为主轴支承跨距。将已知数据和代入,即可得:初步设计的主轴满足刚度要求。6 硬件电路设计6.1 计算机系统微机数控系统由CPU,存储器扩展电路,I/O接口电路,驱动电机驱动电路,检测电路等几部分组成。微机是数控系统的核心,其他装置都是在微机的指挥进行工作的。数控系统要求主要对微机的字长和速度。字长不仅影响系统的最大加工尺寸,而且影响加工的精度和运算精度。字长较长的计算机,价格显著上升,而字长较短的计算机,要进行双字长和三字长的运算,就会影响速度,根据机床要求,综合考虑采用8位微机。由于MCS-51系列单片机具有集成度高,可靠性好,功能强,速度快,抗干扰能力强,具有很高的性价比特点,决定采用MCS-51系列的8031单片机扩展系统。控制系统由微机部分,键盘、显示器、I/O接口及光电隔离电路,步进电机功率放大电路等几部分组成。系统的加工程序和控制命令通过键盘操作实现,显示器采用LED显示器。6.2 单片微机数控系统硬件电路设计内容数控系统是由硬件和软件两部分组成,硬件是组成系统的基础,有了硬件软件才能有效的运行。RAMROMCPUI/O接口外 设键盘、显示器及其它驱动器步进电机图 3-1 机床数控系统硬件框图(半闭环系统)机床硬件电路图由以下几部分组成:1.主控制器,即CPU2.总线,包括数据,地址,控制总线3.存储器 ROM,RAM4.接口,即I/O接口电路5.外设,如 键盘,显示器及光电输入机等。目前在经济型数控机床中,推荐采用MCS-51系列单片机作为主控制器存储器扩展电路应该包括程序存储器和数据存储器的扩展。在选择程序存储器芯片时,要考虑CPU与EPROM时序的匹配,还应考虑最大读出速度、工作温度及存储器的容量问题存储器扩展电路设计包括程序存储器和数据存储器的扩展。此次设计内容包括接口芯片的选用,步进电机控制电路,键盘显示电路以及其他辅助电路的设计(例如复位电路,越界报警电路,掉电保护电路等)6.3 各类芯片简介6.3.1 8031芯片简介Vss:接地VCC:+5伏电压XTAL1:内部振荡电路反向放大器输入端XTAL2:内部振荡电路反向放大器输出端RST/VPD:复位/备用电源ALE/PROG:锁存/接收编程脉冲PSEN:外部程序存储器读选通信号输出端EA/VPP:EA为内部程序存储器和外部程序存储起选择端,对于8031始终保持低电平;VPP为在EPROM编程期间加21伏编程电压P0.0P0.7:在访问外存时,分时传送低8位地址和数据总线P1.0P1.7:8位准双向I/O口,每一位都可作为可编程的输入或输出线P2.0P2.7:8位准双向I/O口,访问外存时输出高8位地址P3.0P3.7:8位准双向I/O口及第二功能口6.3.2 373芯片简介 D0D7: 数据输入端Q0Q7: 数据输出端LE : 锁存信号输入端OE : 锁存信号输出端6.3.3 6264芯片简介A0A12:地址线I/O0I/O7:双向数据线CE1:片选线1CE2:片选线2WE: 写允许线OE: 读允许线 6.3.4 2764芯片简介A0A12:地址线I/O0I/O7:数据输出线CE: 片选线OE: 数据输出选通线PGM:编程脉冲VPP:编程电压 6.3.5 8155芯片简介AD0AD7:地址数据总线RESET:由8031提供复位信号CE:CE=0时,器件才允许被启用IO/M:当IO/M=1时,选择I/O口电路;当I/O=0时,选择存储器ALE:接8031ALERD:为主机发来的读信号输入端WR:为主机发来的写信号输入端 6.3.6 8255芯片简介RESET:由CPU提供复位信号CS:片选信号RD:为主机发来的读数脉冲输入端WR:为主机发来的读数脉冲输入端A1、A0 :端口选择信号 6.4 存储器扩展电路设计 MCS-51系列单片机的特点之一是硬件设计简单,系统结构紧凑,对简单的应用场合MCS-51系列的最小系统用一片8031外扩一片EPROM就能满足功能的要求。对于复杂的应用场合,可利用MCS-51的扩展功能,构成功能强,规模大的系统。6.4.1 程序存储器ROM的扩展MCS-51的程序存储器的寻址空间为64K B。8031不带ROM,用作程序存储器的器件是EPROM。(1)、16位地址总线的扩展由于P0口分时传送低字节地址和数据,所以接入74LS373锁存器,8031的ALE接373的LE,373的OE接地,使373常输出。74LS373的输出口Q与P2口一起扩展出16位地址总线AB,其高三位A13、A14、A15分别与138的A、B、C引脚相连。(2)、地址线的连接根据设计要求,需要扩展两片2764。两片2764的地址线分别与地址总线AB相连。(3)、数据线的连接两片存储器的8位数据线分别与数据总线DB按位依次相连。(4).控制线的连接8031PSEN与EPROM的OE相连;8031的EA接地;2764(1)的OE与138 Y0相连,2764(2)的OE与138 Y1相连。6.4.2 数据存储器RAM的扩展由于8031芯片内部RAM只有128字节,远不能满足系统的需要,需扩展片外的数据存储器RAM,选择6264芯片即可满足设计要求。6264的连接和2764大致相同,唯控制信号线的连接不同;6264的OE,WE与8031的RD,WR相连,CE与138的Y1相连,CE2高电平有效。6.4.3 译码电路的设计8031单片机允许扩展64K ROM和64K RAM(包括I/O借口芯片)(1)、MCS-51单片机应用系统中的地址译码规则第一:ROM与RAM独立编址ROM地址和RAM地址可以重叠使用,都从0000HFFFFH。地址的重复靠片选信号和控制信号区分。第二:外围I/O与RAM、ROM的统一编址外围I/O不仅占用RAM的单元,而且使用RAM的读/写指令,本次课程设计采用统一编址。 (2)、地址译码法常用地址的译码方法有线选法和全地址译码,在这里选择全地址译码。对于容量较大的的系统,扩展的外围芯片较多,芯片所需的片选信号多于可利用的地址线时,就需要用全地址译码的方法。通常采用3-8译码器(74LS138)。输入端占用3根最高地址线,剩余的13根低位地址线可作为片内的地址线。74LS138译码器的8根输出线分别对应8个8K字节的地址空间。6.5 I/O接口电路的设计8031单片机共有4个8位并行I/O口,但可供用户使用的只有P1口和部分P3口,因此在大部分应用系统中都需要扩展I/O口芯片,本扩展系统采用8155和8255芯片。6.5.1 8155通用可编程接口芯片8155是可编程的RAM/IO扩展接口电路。(256个RAM单元,2个8位口,1个6位口,1个14位的定时/计数器)(1)、8155的工作方式8155 I/O口工作方式选择通过对8155内部命令寄存器设定命令控制字实现。(2)、状态查询8155有一个状态寄存器,用于锁存I/O口和定时器的当前状态,供CPU查询用。C/S寄存器共用一个地址。命令寄存器只能写入不能读出;而状态寄存器只能读出不能写入,所以可以认为。CPU读该地址时,作为S寄存器,相反则作为C寄存器。(3)、8155的定时功能8155芯片内有一个14位减法计数器,可对输入脉冲进行减法计数。外部有定时引脚TIMERIN和TIMEROUT。(4)、8031和8155的接口8155芯片可以直接和MCS-512系列单片机连接,不需要任何外加逻辑电路。通常用P2口的高位地址线作为8155芯片的片选信号及IO/M的选择信号。8031的P2.0于IO/M连接。由于8155内部有地址锁存器,所以8031的ALE端可以和8155的ALE端直连,利用8031的ALE的信号的下降沿锁存8031P0送出的低8位地址信息。相应的读写信号也直接相连。 6.5.2 8255可编程接口芯片8255是INTER公司开发的可编程输入输出接口芯片,它具有3个8位的并行I/O口,分别为PA、PB、PC口,其中PC口又分为高4位和低4位,他们都可以通过软件编程来改变I/O口的工作方式,8255可与8031直接连接。(1)、8255的三种工作方式方式0:基本输入输出方式方式1:应答式输入输出工作方式方式2:应答式双向输入输出工作方式(仅A0口可选此种方式,此时C口的PC7PC3五位作为其应答信号使用。(2)、8031和8255的接口连接无需任何外加逻辑电路,直接连接即可。138的Y2接CS,373的Q1,Q2分别接A0,A1。6.5.3 键盘显示接口电路(1)、显示器工作原理数控系统中使用的显示器主要有LED和LCD也有采用CRT的。这里采用LED显示器,一般分为共阳极显示和共阴极显示,共阳极显示的段码与共阴极显示的段码是逻辑非的关系。通常显示器采用动态显示,调整电流和时间参数,可实现高亮度较高较稳的显示。这里采用的是7位共阴极的显示器和8155的接口。8155的B口作为扫描口。经反向驱动器74LS04接显示器的公共极,A口作为段选数据口,经同相驱动器7407接显示器的各个极。 (2)、键盘接口原理当键盘上没有键闭合时,所有的行线和列线都断开,行线都呈高电平,当键盘上某一键闭和时,则该键所对应的行线列线短路。如果把行线接到微机的输入口,列线接到微机的输出口,则在微机的控制下,先使第一列线为低电平,其余列先都为高电平,然后微机通过输入口读行线的状态,如果行线都为高点平,则第一列上没有键闭合,如果读出的行线不全为高电平,则输入为低电平的行线合第一列相交的键处于闭合状态;如果第一列上没有键闭合,接着使列线的第二列为低电平,其余列线为高电平,用同样的方法检查第二列上有无键闭合,依次类推,这种逐行逐列地检查键盘状态的过称为对键盘的一次扫描。(3)、利用8155芯片实现键盘显示器接口在单片机应用系统中,同时需要使用键盘和显示器,常常把键盘和显示器做在一起,以节省I/O线键盘的列线及LED显示器的字位控制共用8155的B口,是输出口。键盘的行线由8155C口担任,是输入口,显示器的段选由8155的A口担任,是输出口。原理图中74LS04位反向驱动器,7404为同向驱动器。6.6 8031的时钟电路单片机的时钟可以由两种方式产生。即内部方式和外部方式。内部方式利用芯片内部振荡电路在XTAL1,XTAL2引脚上外接定时元件。采用外部方式时把XTAL1接地,XTAL2接外部时钟电源。6.7 复位电路 单片机的复位都是用外部电路实现的,在时钟电路工作后,REST引脚上出现10ms以上高电平,单片机便实现状态复位。从0000H单元开始执行程序。单片机通常采用上电自动复位和按钮复位两种。原理图中为上电与按钮复位电路组合。在上电瞬间,RC电路充电。RST引脚出现正脉冲,只要在RST端保持10ms以上高电平就能使单片机有效的复位。6.8 越界报警电路 为了防止工作台越界,可分别在极限位置安装限位开关。一旦某一方向越界,立即停止工作台的移动,这里采用中断方式。利用8031的外部中断INT0只要有任何一个行程开关闭合。即工作台在某一方向越界均能产生中断信号INT0。为了报警,设置红绿指示灯,两灯均由一个I/O口输出6.9 掉电保护电路 半导体存储器RAM一掉电里面存储的信息就会全部丢失,在工业现场环境恶劣的情况下,掉电是难免的,掉电保护电路就是为解决此问题而设计的,原理图中8031芯片上接Vcc引脚为一简单的掉电保护电路。6.10 控制系统的功能1. X向,Y向的进给驱动系统2. 键盘显示3. 面板管理4. 行程控制5. 其他功能,例如光电隔离电路、功率放大器、红绿灯显示等。其他控制见附录控制面板图。 6.11 控制工作原理为了便于说明,以控制面板为例。简述其工作原理。控制面板分为显示器、信号灯、键盘、按钮和旋钮。1.显示器:用来显示工作过程中一些相关的数据2.信号灯:在显示器下面的红灯为越界信号灯,显示器右面是与其对应的绿灯为正常工作的信号灯。当正常工作是时绿灯亮。当在X,Y 方向越界时红灯亮、绿灯灭。键盘右面的灯为电源指示灯,指示灯下放为一“急停”按钮,当需要立即停止时按此按钮。3.键盘:简单的输入设备,可以进行编辑和控制系统的工作。4.按钮:旋钮右面四个按钮+X,-X,+Y,-Y是与手动挡配合使用的,旋钮下方的“X原点”,“Y原点”按钮是使车床刀具回原点的按钮。包括越界回原点、手动回原点。旋钮右下方的按钮位“启动”和“回零” 按钮,此回零为所有回零,任意方向,任何时刻的回零,与上面提到的回零不同,上面提到的“X原点”“Y原点”只是X,
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。