五年高考三年模拟(数学)直线和圆_第1页
五年高考三年模拟(数学)直线和圆_第2页
五年高考三年模拟(数学)直线和圆_第3页
五年高考三年模拟(数学)直线和圆_第4页
五年高考三年模拟(数学)直线和圆_第5页
免费预览已结束,剩余24页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、百度文库-让每个人平等地提升自我第九章解析几何第一节/直线和圆第一部分五年高考荟萃/2009年高考题一、选择题1.(辽宁理,4)已知圆C与直线xy=0及x y4=0者B相切,圆心在直线 x+y=0上,则 圆C的方程为/22_22_A.(x 1)(y 1)2B. (x 1)(y 1)222_22_C.(x 1)(y 1)2D. (x 1)(y 1)2【解析】圆心在 x+ y=0上,排除C、D,再结合图象,或者验证A、B中圆心到两直线的距离等于半径 2即可.【答案】B2.(重庆理,1)直线y x 1与圆x2 y2 1的位置关系为()A.相切B.相交但直线不过圆心C.直线过圆心D.相离【解析】圆心(

2、0,0)为到直线y *1,即* y 1 0的距离d 工逢,而、220 - 1 ,选 B。2【答案】B3.(重庆文,1)圆心在y轴上,半径为1,且过点(1,2)的圆的方程为()A.x2%(y2)2 1B.x2(y2)212_22_2C.(x 1)(y 3)1D.x(y3)1解法1 (直接法):设圆心坐标为(0,b),则由题意知 J(o 1)2 (b 2) 1 ,解得b 2,故圆的方程为x2 (y 2)2 1。/解法2 (数形结合法):由作图根据点(1,2)到圆心的距离为1易知圆心为(0, 2),故圆的方程为x2 (y 2)2 1/解法3 (验证法):将点(1,2)代入四个选择支,排除 B, D,

3、又由于圆心在 y轴上,排 除Co【答案】A29-.、.一 22 一 .4 .(上海又,17)点P (4, 2)与圆x y4上任一点连续的中点轨迹万程是()A. (x 2)2 (y 1)2 1C.(x 4)2 (y 2)2 4B. (x 2)2 (y 1)2D. (x 2)2 (y 1)2 1【解析】设圆上任一点为 Q(s,t), PQ的中点为A(x,y),则4 s22 t2s 2x 4t 2y 2代入圆方程,得(2x4) 2+ (2y+2) 2=4,整理,得:(x 2)2 (y 1)2 1【答案】A'5 .(上海文,15)已知直线 l1:(k 3)x (4 k)y 1 0,与l2:2(

4、k 3)x 2y 3 0,平行,则k得值是()A. 1 或 3【解析】当k=3时,两直线平行,当 kw3时,由两直线平行,斜率相等,得:3,解得:k=5,故选Co6.(上海文,18)过圆 C:(x1)2 (y 1)2 1的圆心,作直线分别交x、y正半轴于点A、AOB被圆分成四部分(如图)若这四部分图形面积满足Sv SS|,则直线人8有()(A) 0 条(B)(C)2条 (D) 3条【解析】由已知,得:SIVSiiSiiiSi ,第II , IV部分的面积是定值,所以,SivSii为定值,即Siii Si,为定值,当直线AB绕着圆心C移动时,只可能有一个位置符合题意,即直线AB只有一条,故选 B

5、o7.(陕西理,4)过原点且倾斜角为 60的直线被圆x2/y2 4y0所截得的弦长为A. . 3C. 6. 3解析:x2 y2 4y 0x2 (y 2)2 4,A(0,2),OA=2,A 到直线 ON勺距离是 1,/ON=3 【答案】D二、填空题弦长238.(广东文,13)以点(2,1)为圆心且与直线 xy 6相切的圆的方程是【解析】将直线x所以圆的方程为(x【答案】(x 2)2y 6化为0,圆的半径|2 1 6|51、,2,22)2 (y(y 1)21)225万25万9.(天津理,13)设直线11的参数方程为则li与12的距离为【解析】由题直线li的普通方程为3x2210.(天津又,14)若

6、圆x y 4与圆t(t3t为参数),直线12的方程为12的距离为-j-1.10y=3x+43.10O2y 2ay 60(a0)的公共弦长为20 ,则a=利用圆心(0,A 1 20)到直线的距离d -a-为寸22 V31,解得a=1.【解析】由已知,两个圆的方程作差可以得到相交弦的直线方程为11.(全国I文16)若直线*m被两平行线11:x y 1 0与12:x y 3-0所截得的线段的长为22 ,则m的倾斜角可以是 15; 30; 45; 60; 75;/其中正确答案的序号是 .(写出所有正确答案的序号)13 1 I【解析】解:两平仃线间的距离为d .J2 ,由图知直线m与11的夹角为30 ,

7、 111 1的倾斜角为45°,所以直线m的倾斜角等于30o 450 750或45o 300 15° ° 【答案】 22 一12 .(全国n理 16)已知AC、BD为圆O:x y 4的两条相互垂直的弦,垂足为M 1,72,则四边形ABCD的面积的最大值为 。【解析】设圆心。到AC、BD的距离分别为d1、d2,则d12+d22 OM: 3.1四边形 ABCD 的面积 S -|AB| |CD| 25(4 d12)(4- d22) 8 (d12 d22) 5【答案】513 .(全国n文15)已知圆O: x2 y2 5和点A (1, 2),则过A且与圆O相切的直线与两坐标轴

8、围成的三角形的面积等于C 1r,一,一一,【解析】由题意可直接求出切线方程为,一 一 5 ,一 ,的截距分别是5和5 ,所以所求面积为2y-2= (x-1),即x+2y-5=0,从而求出在两坐标轴上215 广 255 o2 2414 .(湖北文14)过原点O作圆x2+y2- 6x8y+20=0的两条切线,设切点分别为P、Q则线段PQ勺长为。【解析】可得圆方程是(x 3)2 (y 4)25又由圆的切线性质及在三角形中运用正弦定理得PQ4.【答案】415 .(江西理16) .设直线系 M :xcos (y 2)sin 1(02 ),对于下列四个命题:A. M中所有直线均经过一个定点B,存在定点P不

9、在M中的任一条直线上/C .对于任意整数n(n 3),存在正n边形,其所有边均在 M中的直线上D. M中的直线所能围成的正三角形面积都相等/其中真命题的代号是 (写出所有真命题的代号).【解析】因为xcos (y 2)sin 1所以点P(0,2)到M中每条直线的距离d j 11,2. 2.cossin即M为圆C:x2 (y 2)2 1的全体切线组成的集合,从而M中存在两条平行直线,所以A错误;又因为(0,2)点不存在任何直线上,所以B正确;对任意n 3,存在正n边形使其内切圆为圆 C,故C正确;M中边能组成两个大小不同的正三角形ABC和AEF ,故D错误,故命题中正确的序号是B,C.【答案】B

10、,C 三、解答题16. (2009江苏卷18)(本小题满分16分)在平面直角坐标系xoy中,已知圆C1:(x3)2(y1)24和圆C2:(x4)2(y5)24.(1)若直线l过点A(4,0),且被圆Ci截得的弦长为2国,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线11和I2,它们分别与圆C1和圆C2相交,且直线11被圆C1截得的弦长与直线12被圆C2截得的弦长相等,试求所有满足条件的点P的坐标。解(1)设直线l的方程为:y k(x 4),即kx y 4k 0由垂径定理,得:圆心C1到直线I的距离d /2 (苧)结合点到直线距离公式,得:13k 1 4k|1,

11、化简彳导:24k2 7k0, k 0,or,k求直线l的方程为:y 0或y724(2)设点P坐标为(m,n),直线l1、24(x 4),即l2的方程分别为:y 0 或 7x24y28 0n km 0,1口y n k(x m), y n (x m),即:kx y k因为直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,两圆半径相等。由垂径定理,得:圆心C1到直线I1与C2直线I2的距离相等。故有:化简得:关于k的方程有无穷多解,有:,或m-n+8=0m+n-5=0解之得:点p坐标为(313)或e2,221一、选择题2005-2008年高考题1. (2008年全国n理11)等腰三角形两腰

12、所在直线的方程分别为原点在等腰三角形的底边上,则底边所在直线的斜率为A. 3B. 2答案 A解析由题意,再将A、11 :x y 2 0,k10,k213到11所成的角等于12到13所成的角于是有R C、D代入验证得正确答案是Ao2. (2008年全国n文3)原点到直线xA.B. .3答案解析3. (2008 四川 4)到的直线为k1 k1 k1k2y 5 0的距离为C. 222V5O将直线y 3x绕原点逆时针旋转90°,B- yy 3x 31D. y - x3答案 AD.2 0 与 x-7 y-4=0,1,,设底边为137k k21 k2kD. 5kx再向右平移1个单位长度,7k 1

13、所得4.(2008上海15)如图,在平面直角坐标系中,个与x轴的正半轴、y轴的正半轴5.分别相切于点G D的定圆所围成的区域(含边界)A B、C D是该圆的四等分点.点 P(x, y)、点 P (x , y )满足 x < x 且 y > y ,足:不存在中的其它点优于Q那么所有这样的点则称P优于P .如果Q组成的集合是劣弧中的点A.(答案 D(2007重庆文)若直线与圆x2y21相交于P、Q两点,且/ POQ= 120原点)/,则k的值为禽或73B. ,3D. 2答案 A6.(2007天津文)“直线ax2y 0平行于直线7.A充分而不必要条件C.充分必要条件答案 CB.必要而不充

14、分条件D.既不充分也不必要条件(2006年江苏)圆(x 1)2 (y 73)21的切线方程中有一个是(其中O为(x y 1” 的8.y = 0答案 C9.(2005湖南文)设直线的方程是AxBy 0,从 1,3, 4, 5这五个数中每次取两个不同的数作为 A、B的值,则所得不同直线的条数是A. 20B. 1918D. 16答案 C(2005全国I文)设直线l过点(2,0),且与圆.一 33l的斜率是D.答案 C10. (2005辽宁)若直线2x y c 0按向量a(1,1)平移后与圆x2 y25相切,则c的值为A. 8 或2答案 AB. 6或一4C.4或一6(D. 2 或一811. (2005

15、 北京文)“m=l” 是“直线(m+2)x+3my+1=0 与直线(m- 2) x+( m+2)y 3=0 相互垂2直”的()A充分必要条件B,充分而不必要条件C必要而不充分条件/D,既不充分也不必要条件答案 B/二、填空题12. (2008天津文15,)已知圆C的圆心与点 P( 2,1)关于直线y=x+1对称,直线3x+4y-11=0与圆C相交于A,B两点,且AB 6,则圆C的方程为.答案x2 (y 1)2 1822 X13. (2008四川又14)已知直线l:x y 4 0与圆C:x 1 y 12,则C上各点到l的距离的最小值为 .答案 214. (2008广东理11)经过圆x2 2x y

16、2 0的圆心C,且与直线x y 0垂直的直线 程是答案 x y 1 015. (2007上海文)如图,A, B是直线l上的两点,且 AB 2 .两个半径相等的动圆分别 与l相切于A, B点,C是这两个圆的公共点,则圆弧AC, CB与线段AB围成图形y 4相切的圆的方程是面积S的取值范围是. 答案 0,2 216. (2007湖南理)圆心为(1,1)且与直线x答案 (x-1) 2+(y-1) 2=217. ( 2006重庆理)已知变量x,y满足约束条件 中a>0)仅在点(3,1)处取得最大值,则答案 a>11<x+y<4,-2 <x-y<2.若目标函数 z=a

17、x+y(其a的取值范围为x y 2 018. (2005江西)设实数x,y满足x 2y 4 0,则丫的最大值是x2y 3 0第二部分 '三年联考汇编2009年联考题、选择题0与直线1.(西南师大附中高2009级第三次月考)“a= 3”是“直线ax 2y 16x 4y c 0平行”的()条件A.充要C.必要而不充分答案 C2 .(重庆市大足中学多宏耳大不THA相交答案 C3 .(西南师大附中高是A.内切答案 B4 .(西南师大附中高2009年高考数学模拟试题B.相离2009级第三次月考)两圆B.外切2009级第三次月考B.充分而不必要D.既不充分也不必要)直线x+y+1=0与圆x 1C.

18、相切D.不能确定x 3 2cosy 4 2sinC.相离)已知点P (x, y)是直线2的位置3cos 的位置关系3sinD.内含kx+y+4 = 0 (k > 0上一动点,PA PB是圆C: x2 y2的最小面积是2,则k的值为21A. 3B.2答案 D5.(福建省南安一中、安溪一中、养正中学2y 0的两条切线,A、B是切点,若四边形 PACB( )C. 2 2D. 22009届高三期中联考)已知实系数方程x2+ax+2 b=0,的一个根大于0且小于1,另一根大于11A. (j, 1)B.(1,D1且小于2,则b-的取值范围是 (a 1D. (0,)3答案 A6.(广东省华南师范附属中

19、学2009届高三上学期第三次 综合测 试)点(4, t)到直线4x 3y 1的距离不大于3,则t的取值范围是()1 x 31-A. - t B. 0 t 1033C. 0 t 10D. t 0或 t 102 一 一一 一一y2 6x 8y 0,设圆答案 C/7.(四川省成都市 2009届高三入学摸底测试)已知圆的方程为x2中过点(2,5)的最长弦与最短弦分别为AB、CD,则直线AB与CD的斜率之和为()A 1答案 BB.0C. 1D. 28.(湖南省长郡中学2009届高三第二次月考)直线l:y 1 k(x 1)和圆x2y2 2y 0的关系是A相离B.相切或相交C.相交D.相切答案 C9 .(福

20、建省宁德市2009届高三上学期第四次月考 )过点M (1,2)的直线l将圆(x-2) 2+y2=9分成两段弧,当其中的劣弧最短时,直线 l的方程是()A. x1B.y1C. xy1 0D.x2y3 0答案 D二、填空题10 .(广东省华南师范附属中学2009届高三上学期第三次综合测试)从圆(x-1)2+(y-1)2=1外一点P(2,3)向这个圆引切线,则切线长为 .答案 211 .(江苏省赣榆高级中学 2009届高三上期段考)直线x 2y 3 0与直线ax 4yb 0关于点A(1,0)对称,则b=。答案 212 .(湖南省长郡中学2009届高三第二次月考)过点C(6 ,-8 )作圆x2y225

21、的切线,切点为A、B,那么点C到直线AB的距离为。/5/答案 5213 .(四川省成都市20082009学年度上学期高三年级期末综合测试)光线由点P(2,3)射到直线x y 1上,反射后过点Q(1,1),则反射光线方程为 .答案 4x- 5y+1 = 0/14 .(安徽省巢湖市2009届高三第一次教学质量检测)过M (-1,1)的直线l与圆C: (x-1)2+y2=4交于A、B两点,当/ ACB最小时,直线的方程为 .答案 2x 4y 3 09月份更新1、(2009临沂一模)已知点 P(x,y)是直线kx+y+4=0(k>0)上一动点,PA、PB是圆C:xy21沿x轴正方向平移1个单位后

22、得到圆 C,若过点(3, y2 2y 0的两条切线,A、B是切点,若四边形PACB的最小面积是2,则k的 值为A、22.B、 C、2 V2答案DD、2222、(2009日照一模)已知圆x y称,则ab的取值范围是11A. (,- B. (0,-)44答案A2x 4y 1 0 关于直线 2ax by 2 0(a,b R)对c. ( 4,0)D.3、(2009青岛一模)已知直线x2及x 4与函数y log 2 x图像的交点分别为 A, B ,与函数y lgx图像的交点分别为 C, D ,则直线 AB与CDA.相交,且交点在第I象限 B. 相交,且交点在第II象限C.相交,且交点在第IV象限 D.

23、相交,且交点在坐标原点 答案D4、(20009泰安一模)若PQ是圆x2 y2 9的弦,PQ的中点是(1,2)则直线PQ的方程 是(A) x 2y 3 0(B) x 2y 5 0(C) 2x y 4 0(D) 2x y 0答案B5、(2009潍坊一模)若PQ是圆x2 y2 9的弦,PQ的中点是(1,2)则直线PQ的方程是(A) x 2y 3 0(B) x 2y 5 0(C) 2x y 4 0答案B(D) 2x y 026、( 2009枣庄一模)将圆x0)的直线l和圆C相切,则直线l的斜率为A. 、,3B.,33D.37、( 2009滨州一模)已知直线Xy a与圆x22y交于A、B两点,|OA O

24、B| |OAOB|,其中。为原点,则实数a的值为A. 2 BC.2 或一2 D8、(2009滨州一模)如果直线y=kx+ 1与圆X22y kx my 4 0 父于M、N两点,且M、N关于直线x+y=0对称,若P(a,b)为平面区域kx y 1 0kx my 0内任意一点,则y 0b 1 , 一 U的取值范围是a 1答案1,22007 2008年联考题一、选择题1 .(四川省巴蜀联盟 2008届高三年级第二次联考)已知点A (3,2), B (-2,7),若直线y = ax-3与线段AB的交点P分有向线段AB的比为4:1,则a的值为()A. 3B. -3C. 9D. -9答案 D2 .(北京市丰

25、台区2008年4月高三统一练习一)由直线y x 1上的点向圆(x-3)2+(y+2)2=1引切线,则切线长的最小值为()A ,17B.3.2C. 19D,2 . 5答案 A3 .(北京市西城区2008年5月高三抽样测试)圆x 1 2 y2 1被直线x y 0分成两段圆弧,则较短弧长与较长弧长之比为、/()A 1 : 2B, 1 : 3C. 1 : 4D, 1 : 5答案 B4 .(广东省汕头市澄海区2008年第一学期期末考试)直线y x b平分圆x2+y2-8x+2y-2=0的周长,则b/、()A. 3B. 5/ C. 3 3D. - 5答案 DI5 .(安徽省合肥市 2008年高三年级第一次

26、质检)把直线 x y 2 0按向量2 (2,0)平移后恰与x2 y2 4y 2x 2 0相切,则实数 的值为B. 0或应/ C. #或彳D.,或我答案 C6. (2007岳阳市一中高三数学能力题训练)若圆(x 3)2 (y 5)2 r2上有且仅有两个点到直线4x 3y2=0的距离为1,则半径r的取值范围是()A. (4,6)B.4,6)C.(4,6D.4,6答案 A7.(2007海淀模拟)已知直线ax+by-1=0(a,b不全为0)与圆x2+y2=50有公共点,且公共点横、纵坐标均为整数,那么这样的直线有()条答案C二、填空题7 .(甘肃省兰州一中2008届高三上期期末考试)光线从点P (-3

27、, 5)射到直线l:3x-4y+4=0 上,经过反射,其反射光线过点Q (3, 5),则光线从P到Q所走过的路程为 .答案 8x 1 cos 8 .(河北省正定中学2008年高三第四次月考)圆(为参数)的标准方程y 1 sin是,过这个圆外一点 P 2,3的该圆的切线方程是 。/答案 (x 1)2+(y-1)2= 1; x=2 或 3x 4y+6= 0/9 .(湖北省鄂州市2008年高考模拟)与圆x2 (y 2)21相切,且在两坐标轴上截距相等的直线共有 条./答案 422 一10 .(湖南省长沙市一中 2008届局三第六次月考)设直线ax y 3 0与圆(x-1) +(y-2) =4相交于A

28、、B两点,且弦长为2/3,则a=。答案 011 .(江苏省泰兴市20072008学年第一学期高三调研)设直线li的方程为x 2y 2 0,将直线li绕原点按逆时针方向旋转 90得到直线12,则12的方程是答案2xy+2 = 0/12 .(2007石家庄一模)若Jx 5 w kx+2对一切x> 5都成立,则k的取值范围是 .答案 k>1/10 或 k<2/513 .(唐山二模)G)M:x2+y2=4,点P(x0,y0)在圆外,则直线x0x+yoy=4与。M的位置关系是 答案相交/三、解答题214 .(江苏省南东市2008届局二第一次倜研测试 )已知:以点 C (t, - )(t

29、e R , t丰0)为圆心的圆与x轴交于点 O, A,与y轴交于点 O, B,其中。为原点.(1)求证: OAB的面积为定值;(2)设直线y = Wx+4与圆C交于点M, N,若OM = ON,求圆C的方程.、解(1) 圆C过原点O, OC2 t2 -4 .t22 .2. 2. 24设圆c的万程是(x t) (y 7)tt2人,口4人,口令 x0,得 y10, y2,;令y 0 ,得 x10, x22t1 14S OAB -OA OB - Ip| |2t | 4,即:OAB 的面积为定值.2 2)OM ON,CM CN, OC垂直平分线段 MN .八,1_ ,八-,、,1kMN2, koc直线

30、OC的方程是y -x.2221t ,解得:t 2或t2t 2当t 2时,圆心C的坐标为(2,1), OCJ5,一一9/此时C到直线y 2x 4的距离d 7 。5 ,、- 5圆C与直线y 2x 4相交于两点./当t 2时,圆心C的坐标为(2,%1), OC J5,此时C到直线y 2x 4的距离d 2/近5圆C与直线y 2x 4不相交,t2不符合题意舍去./22/圆C的方程为(x 2) (y 1) / 5.、15.(广东地区2008年01月期末试题)已知点A, B的坐标分别是(0, 1), (0,1),直线,、一八,一一,1AM , BM相交于点M,且它们的斜率之积为一.2(1)求点M轨迹C的方程

31、;1y 1 y 11 kAM kBM)一.2x x22整理,得土 y2 1 ( x 0),这就是动点2(2)方4- 由题意知直线l的斜率存在,1设l的方程为y k x 2 ( k 1)22将代入y21 ,2得(2k2 1)x2 8k2 x (8k2 2) 021由工0,解得0 k2 1 .2x1 x2设 E Xi,y1 , F x2, y2 ,则XiX2令SOB,则LBEJ ,即 BES OBF| BF |M的轨迹方程.)8k22k21,/8k2 22k2 1.BF ,即 x, 2x2 2 ,且 01.(2)若过点D 2,0的直线l与(1)中的轨迹C交于不同的两点 E、F (E在D、F之 间)

32、,试求 ODE与 ODF面积之比的取值范围(O为坐标原点).解(1)设点M的坐标为(x,y),由得,(Xi 2) (X2 2)42k2 1(Xi2)(X2 2)X1X2 2(Xi X2) 42T22k2 1X24 2k2 12x2 2222k2 1(1)22k21,即 k2(1)2八 41141122(1)2 2 2(1)22 4解得3 2.23 2.2且 13101,3 2V21且 .3.OBE与OBF面积之比的取值范围是3 2 .巧,1 U1,1 33方法二由题意知直线l的斜率存在,设l的方程为x sy 2(s2)2将代入y21 ,222整理,得(s 2)y 4sy 2 0,由 0,解得s2 2 .Vi V2设 E X1, y1 ,F X2, y2 ,则4ss2 2sobe 2ob,/ SOBF OBHy21y22V1V2 -s将yiy2代入,得8s21 V22V22且s4,4ss2 22s2 2.212614.212 号即2 61 0且 -.3解得 3 2,23 2 213 .101,3 2d21 且 一.»3故A OBE与/ OBF面积之比的取值范围是3 2 J2 1 I I 1 133'16.(江苏省泰兴市2007-2008学年第一学期高三调

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论