数学分类156答案(2012、09、22出版)_第1页
数学分类156答案(2012、09、22出版)_第2页
数学分类156答案(2012、09、22出版)_第3页
数学分类156答案(2012、09、22出版)_第4页
数学分类156答案(2012、09、22出版)_第5页
已阅读5页,还剩69页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一单元数与式第一章实数及其运算第一节实数的概念15BCBDB 6-9CBBB 10、3 11、0 12、2 13、11第二节实数的倒数、相反数、绝対值1-5ADBAA 410ACDAA 11 15CABDD 16、2012 17、1/2 18、m-n 第三节 平方根、算术平方根和立方根1-6BDDBAB7、土根号 2第四节科学记数法和近似值1-4CCDC 5-8BCAD 9、1 6X1O1010、10-911、0012第五节实数大小的比较1-5CDCDB 6、v 7、>8、9、石 10、n-m第六节实数的运算1-6CCBBAC 7、1/2 8、-1/6 9、4 10、1011、112、

2、解:原=lCH-200(H-2=2012.13、解:原式=32近4+3近=V2-】14、M8 卜 (V2 - 3)*' 6 »< (j1):15、解:原式=42后JI4x逅|+1=4 2V3+2V3 1+1=-4.矽>2 _$和 >916、17、解:原式=13+23=-V3+V3=0.第七节运用实数的运算解决简单实际问题1. C 2、 1000 3. 18 4. 18-20第二章代数式第一节列代数式1-4CBAA 5. (2m+3) 6. (85%a+60%b) 7、(100-5x) 8.乙 9. 第二节求代数式的值I、A2、B3、A4、65、26、 67、

3、 58、 19、 9710、8II、解:原式 b2+b2 2b=a2 2b,当 a=f, b=l 时, 原式=(V2)2 2x1=012、解:(a+2) (a 2) +2 (a2+3) =a2 4+2a2+6=3a'+2,当a=l时,原式=3x (1) +2=丄33313、解:原式=x?+6x+9+4 x?=6x+13当 x= 2 时,原式=6x ( - 2) +13=1第三章整式及其运算第一节整式有关的概念1、C2、D3、 34、 3第二节整式指数幕的意义和基木性质1>C2、D3、B 4、B5、A6、D7、B8、D 9. D10、a5第三节整式的运算1、C2、D3、D 4.B

4、5、C6.A7、A8、D 9.D 10. C11、b 12、一 3dV 13、1 14、4 15、4mn 16、217、a (1 - a) + (a+1) 2 - 1 =a - a2+a2+2a+l 1=3a.18、3(2x2 - j2)- 2(3y2 - 2x2)=6x2 - 3j2 - 6y2 + 4x2=10x2-9/.JK式 « a2 - A1 2a3-3/ - 6勺当 a m 、b /L 时.19、=3x1- J2 = I.20、才一P= (2x+y)2(a),)2=(4)?+4»+尸)(4X24»+jd)=4V+Axy +)'4X2+4x)y1

5、涼成二4*: _94,<2 .4九-4x *4 x* -$ 一21、当戈二“3时廉式=2222、原式=2(m? m + nr + ?n)(n?2 -m-m2 -m) = -2x2m 2nr = 一8加'观察-8巾则原式表示一个能被8整除的敌第四节冈式分解1、B2、D3、A4、A5、D6、D7、B8、B9、x? 310、(a + 2b)(a-2b)11、(m -3)2io M31 儿13、 m (m 4)14、x(x +2)(x-6)15、(x 1) (x+2)16、(b - c) (a - b)17、原式=mn(m29)=mn(m + 3)(m3) 第四章分式及其运算第一节分式的

6、概念1、B2、H2第二节分式的基本性质1、A2、(1)2, (2)1第三节分式运算1、C2、B3、D4、x-15、m6、17、j8、原式:a i (a+1a a(a+l).i &(a+l)"a (a+l)(a-l)=-l.9、序式=士 一 b .(忌+b)(犷 b)a+baa (a+b)a 一 b) =a+ba=a - b.1°、34(“】)("-2)q + 2=a 2k + 2-2a11、原式=1±£.(ZX匕)12、13. 原式_ x空里+(a+2)(a* 2) 2a亠aVa*O> a#±2»a可以等于1,

7、当a=l时,原式=1+1=2.14、解:原式=(三土)十3-2 已-2(a+2)(a" 2)a-3(a+2)(a- 2)a" 2a" 2(a 3)(a+2)=Va= - 3,.原式_(一3-3) (-3+2)_ _ 65-3-2x (x+1)15、解:原式珂 W7门J()x(X - 1)(x+1) (x - 1)(x+1) X (x - 1)xx+l *由于当x=l或x=l时,分式的分母为0,故取X的值时,不可収x=1或X=1, 不如取x=2,此时原式春】6、解:原式=(晋古)1x (x - 2)-xx (x - 2)x - 2(x+3) >Vx*O>

8、 x#2»当x=l时,原式=(1+3) = - 2.17、解:V 14=5,a babab (a* b) ab (a* bab (a- b)=(ab) (a" b) > ao (a*b/= a+b. ab=Vs»18、 rg古-(b+aXba) a aba(a-d) (a d)2 ab ab当"近=时原式.(V2 +75x72-73)85 (运)2 -(方)2第五章二次根式及其运算第一节二次根式的概念与解法3、C4、C5、B6、27、58、2-73 <h<2第:节:次根式的运算1、B2、03、屆4. 20+25、26、5>/1+1

9、7、解:V3x/12+| - 4| 9x3 J2012°=V3X12+4 - 9x1 -1=6+4 3-1 =6.8、原式=273+2x1-2731=29、原心字42=310、原式=1+1+2(近1)=3 近11、原式=2xA - 2 - (2 - V3) (3 - V3)2=12(65近+3)=-1 - 9+53=-8+53第二单元方程与不等式第一章一元一次方程第一节一元一次方式的概念和解法1、D2、x=2第二节利用一元一次方程解决实际问题1、A2、A3、20000 3x=5OOO4、225、716、10007、解:设到德庆的人数为X人,到怀集的人数为y人亠fx +y = 200依

10、题意,得方程组:<7U = 2y-1A z fx = 133解这个方程组得:(、y = 67答:到德庆的人数为133人,到怀集的人数为67人. (、8、19.设怡秋10兀的为x人,捐款$5元的为y人,(1分)得x+y=25l(lr+l5y=400-120, (6 分)解此方纽,得花=19,>=6(9分)答:捐款10元的右19人,掐款15尤的启6人(10分)9、解:设公司在甲电视台和乙电视台做广告的时间分别为x分钟和y分钟, 由题意得,卩+尸'°°,1500x+200y=90000解得:(X=10°,I 尸 200即该公司在甲电视台做100分钟广

11、告,在乙电现台做200分钟广告.此时公司收益为100x0 3+200x0.2=70万元.答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,甲、乙两电视台2012年为此公司所播放的广告将给该公司荒来70万元的总收益.第二章二元一次方程组第一节二元一次方程组的概念和解法1、B2、A3、A4、D5、C6、CI x二 37、|y=o9、k>210、解答:解:2x-y=l +得:3x=6,(3分)x=2t (4 分)把xW代入得:y=3.(7分)爲(8分)由屮紂3yI. 物代入.得3( 3一1) 2y=»8. 解这个方程得,=一1 檢尸-I代入.HJx=2.所以原方程细的

12、關足11、第二节 利用二元一次方程组解决实际问题1、B2、D3、B4、205、11006、y = 5x.x +)=解:设中国人均湊水资潭占有fit为rhU英囚人均浹水责占有量为.nJ = 2300.v = 11500站 中国人均茨水资源占有屋为2300m"国人均淡水资源占有星为11500m3.7、解:设甲中车辆一次运土 x立方米乙车辆一次运土 y立方米, 由题意得,产+4尸140,3x+2尸76解得:产】2I尸20答:甲、乙两种车每辆一次可分别运土 12和20立方米.8、解:设这根绳子长为x尺,环绕油桶一周需y尺答:这根绳子长为25尺,环绕油桶一周需7尺9、U / -28荐注的值为1

13、68的值为R4.10、解,汝渣林更新面秩为乂万亩,城请绿化面秧为厉亩,依题意得 15+x+y=39. 5、x=jy+2 5餡得:F".y=5. 5普:造林更新面积为19万亩,诚頂绿化面积为5. 5万亩.11、解匸(1)设境外投資合作顼日个数为x个,根弭题意得血2 (34风)=51,解得:x=13J,故猶外境内投密合作项为,34 13=215个.答:境外投资介作顶W %) 133个.省外境内投赍介作项日为215个.(2),境外、省内境外投饪介作项目平均侮个项北I进赛金分别为6亿凡7.5亿疋,:湖南省共引进资金;133乂6+21545=2410.5亿兀.牢 东道湖南自共引进轻金2410.

14、5亿兀12、解:(1)甲:x表示产品的旋最,y表示原料的更最, 乙:x表示产品销售额,y表示原料费,甲方程组右边方框内的数分别为:15000, 97200,乙同甲:(2)将x=300代入原方程组解得y=400产甜销售额为300x8000=2400000 7C原料费为400x1000=400000元又运费为 15000+97200=112200 元:这批产品的销住额比原料费和运费的和多2400000 - (400000+112200) =1887800元 第三章分式方程第一节分式方程的概念和解法1、C2、C3、C4、D5、x=88、19. 010、解:方程两边都乘以3x (x+5)得,6x=x+

15、5»解得x=l,检验:当 x=l 时,3x (x+5) =3x1 X (1+5) =18工0,所以x=l是方程的根,為J-2)(1分)因此.原分式方程的解是X=l-4 5M - 1 M -3-汕检黑=3是IS力程的解所以咏方程的績足"311、12、解:原方程即:方程两边同时乘以(x+2) (x-2),得 x (x+2) - (x+2) (x - 2) =8.(4 分)化简,得2x+4=8.解得:x=2(7分)检验:x=2时,(x+2) (x2) =0,即x=2不是原分式方程的解, 则原分式方程无解.(8分)13、解:去分母,得(x - 3) (x+3) +6x - 3x2=

16、O»去括号,得 <9+6x - 3x2=C,合并,得9+6x=0,所以,原方程的解为嗚14【分扌斤】解:.y(x-5)-6 = x-3- 4x-3 = 0M 1 或 X Z M 3 经检验:"3是方程的增根,1是原方程的根。第二节利用分式方程解决实际问题1、C2、B3、B&事袒的价为 > 元.徇好检x = 15 OrW方利的權4、斫以.酵才:书的阪价为15元小明实际可购实图W 30 $5、设片国槐工毫克/年则一片银杏(2x-4)亳克/年10005502x-4 x = 22经检验:x = 22是方程的解 答:国槐22亳克/年。6、解:设九年级学生有x人,根

17、据题意,列方程得:1936xX0. 8=1936X+ 88整理得0 8 (x+88) =x解之得*352.经检验x=352是原方程的解.答,这个学校九年级学生有35?人.7、解:设原计划的行驶速度为xT米/时,则: 180-60 _180-60 _40x1. 5x 60解得x=60,经检验:x=60是原方程的解,且符介题意, 所以x=60.答:原计划的行驶速度为60米/时8. :不能相同。理由如下:假设能柑等,设兵乓球每一个X7C>羽毛球就是x+14。得方程2000x2800 =x+14'解得r=35。但是当*35时,2000-35不是一个整数,不符合实际情况.【答案】解:(1

18、)设弟一次所购水果的进货价见每千克X元,依题恿,得-=3x 解得,x=5t经检馆 25是原方程的解.x + 0.5x则第一次进货价为5元:(2 )第一次购进:5OOv5=1OO 克,第二次购进:3x100=300 T克.获利:100x( 1 -5%)x8-5(X)I+(3()Ox(l -2%)x8-1650)=962 元.答:第一次所购水果的进货价是毎克5元.诊水果店售完这些水果可获利962元10、天乙公I.为兀.HMWell j 吉吉)介天y凭期乙公側口天的T歆1 】刃0)元.Slt.H !2(y*ylSOO).iaM»aMMK *2(厲“)甲仝禹尢 QLUMliy :3>買

19、$0818000(元)乙工»> m(w». i«o) iokox x)故甲公第四章一元二次方程 第一节一元二次方程的概念1、AO 0> 一3、-3 第二节一元二次方程的解法1、A2、D3、D4、15、46、4X1K2=8 _4 士虑%2+72片2施.7、原方程可化为x2 + 2x-3 = 0解得 x = li?Jcx = -3 - 8、x】=2+屈&=2禹卩第三节一元二次方程根的判别式1、D2、A3、D4、35、096、厲当“W P-4«c-4xix3 = -8<0-:原方程发肖实数根当加=-3时,才十"-3=0(&q

20、uot;3)(1) = 0 xi = 3 r2 = 17、解:(1)证明:VA=(加+2) 24 (2®1) = (口一2) *+4,在实数范闱内,加无论取何值,(加一2) 2+4$4>0,即A。关于x的方程丘一 5+2)卄(51) =0恒有两个不相等的实数根。(2)此方程的一个根是1,/. I2-1 X (加+2) + (2 1) =0,解得,加=2,则方程的另一根为:勿+ 2 1 =2+1 =3。当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为価,该U角三角形的周长为1 + 3+ 丽=4+ 皿。当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形

21、的另一直角边为2血:则该直角三角形的周长为1 + 3+271=4+271。第四节尤二次方程根与系数的关系1、D2、B3、C4、C6、B657、一一88、149、解:(1) I关于x的一元二次方Sx2+3x+m-l=O的两个实数根分别为xl,x2. ZMO.13即 32-4 (m-1) $0,解得,mW 4 .(2)由己知可得 xl+x2=3 xlx2= m-1又 2 (xl+x2) +xlx2+10=0A2X (-3) +mJ+10=0m=-3 10、解(1)由(x-n?) Vxi2=-= -m'sO. xi+X2=m - 3t a +6x = 4ni-3,得x2 + (6 - 2m)

22、x + m2 -4m+ 3 = 0.A A = d2 - 4ac = (6-2m)2 -4xlx(mAxj, x?异号,又|X1 冃X2l - 2, EPlxil - |x2|= - 2, -4m + 3)=-8m + 24.)方程有实数根,一8加+ 24事0.解得加W3.加的取值范围是m W3(2)V方程的两实根分别为心与由根与系数的关系,得A xx+x2 = 2m-6 9 Xj -x2 = n?2 -4n? + 3 , :.xxx2 - x/ -疔 =3xxx2 - (Xj + x2)-=3(n?2 - 4m + 3) - (2n? - 6)2= -m2 +12m - 27=-(n? -

23、6)2 + 9 且当m <6时,一(巾一6),+9的值随加的增人而増人,当m = 3时,Xj-x-j-xf-xf的值展人,绘人值为一(3-6)?+9 = 0.:.Xj-Xj -Xj2 一 X22 的最大值是 0.11、解:(1) 一元二次方程x'(m3) x - m2=0»Va=l b=(m - 3) c= m2» 且(m 3) 2>0» 4m2>0> /b* 4ac= (m 3) 2+4m2>0»则方程右两个不相等的实数根;若 xi>0, X2<0» 上式化简得:xi+x?=-2,.'

24、.m 3= 2,即 m=l,方程化为x2+2x - 1=0,解得:xi= - 1+V2» X2= - 1 - V2若 XV0, x?>0,上式化简得:-(Xj+X2) = - 2»/.Xi+X2=n 3=2,艮卩 m=5,方程化为x 2x25=0,解得:X2=l+V26.第五节 利用一元二次方程解决实际问题1. C2、C3、30004. (22-x) (17-x) =3005 (x - 1 : x (x - 1 ) : x (x - 1 ) =281 x2 x=28: xi=8, X2= 7: x=8: 82 2 2 26、解:设 AB=xm,则 BC= (50 2x

25、) m.根据题意可得,x (50 - 2x) =300,解得:xi=10, X2=15»当 x=10, BC=50 - 10 10=30>25,故Xi=10 (不合题意舍去),答:可以闌成AB的长为15米,BC为20米的矩形.7、解:设小道进出口的宽度为"米,依题意得(3O-2x) (20-x> =532.整理,得 “35x+34=0. 解得,X|=l. x2=34."34>30(不合题意,舍去),/菩m小道进出口的宽度应为1米.依題倉 W 50000-*x)3= 7200.3 分解緡«,=0.2x,=-2.2 (不合题竄.舍去).答;

26、这两年我冈公民出境旅游总人效的年平均増饮率为26.5分(2)苦2012年仍保持相同的年平均壊檢搴,則预测2012年我国公民出境旅游总人數約 7200X (1 十 20%)=8640(7人次)答:决测2012年我国公民岀境旅游总人数约8640万人次.7分9、解 (1)设平均每次下调的百分率为X.)由题意,得5(1-x)3 =3.2.解这个方程,得X! = 0.2 , x2 =1.8.冈为降价的百分率不可能人于h所以X, =1.8不符合题意,符合题目要求的是Xi =0.2 = 20%.答:平均每次下调的百分率是20%.(2)小华选择方案一购买更优惠.理由:方案一所需费用为:3.2x0.9x5000

27、 =14400 (元人方案二所需费用为:3.2x5000-200x5 =15000 (元)J 14400 <15000,小华选择方案一购买更优惠.10、(1每丰兗板金帀殊济玄弘元?检 I 1« 权拟电总.讦;X2Q| - 2240.化简得J-H244. 解得-答:S F克铁樸应降俭专元或。丿&V)兀甲為耳心小f、2的悄况 二解:山可归啕九孩隽町障价4元或6丿心丙为堡尽可能讣利收氛所以毎千克核擁应障价6 C此讯.代价为:e)r = 51 兀).u)(i -90%.-答:财应技潦傅旳的九折出曲. 11.爸为"怏秤閔色价力120竟)(的-”00元妙如元x20 - 0

28、. Str60;,f * 今RIIjc: -220.i ««»片厂220 时 JM-O5X 普希-4 亠 SV 100. Axt -r. » 10 DT.IJO-O.SX (80-6W -:.工 一 S0e -12、解:(1)根据3月份用电80千瓦时,交电费35元,得,20+y窃(80a)=35, H|J a2 80(7+1500=0解得o=30或0=50。由4月份用电45千瓦时,交电费20元,得,a$45,Aa=50o(2)设月用电量为x S K时,交电费y尤。则(20 (OWxWM)7=|2(>+0.5(x-50Xx>50)5月份交电费4

29、5元,5月份用电量超过50瓦时。.-.45=20+0 5 (x-50),解得4100。答:若该宿舍5月份交电费45元,那么该宿舍当月用电量为100瓦时。第五章一元一次不等式第一节不等式的基本性质1、D2、A第二节一元一次不等式的解法1、B2、B3、B4、B6、1,2,37、(1) 5 (x 2) +8<6 (x 1) +75x 10+8<6x- 6+75x - 2<6x+l-x<3x>38、(1) 5 (x 2) +8<6 (x 1) +75x - 10+8<6x - 6+75x 2V6x+lx<3x> - 339、解:移项得:2r2x&g

30、t;l.合并同类项得:一2>1,不等式的两边都乘以一2得:x<-2.在数轴上表示不等式的解集为:-5 -4 -3 -2 -1 0 1 2 3 4 5>.10、无11、解:如图,丁将(1, 1)代入y=kx+3得l=k+3,Ak=2,即 y=2x+3,当 y=0 时,x=-.2即与x轴的交点坐标是(2 0),由图象可知:不等式心V。的解集是4寻1、Bo jc W18一、次不等式解决实际问题4、依题意得:12000 = 8000x + 4 x解之得:x = 8,经检验x=8是方程的解.并且符介题意x + 4=12所以,去年购进的文学书和科普书的单价分别是8元和12元.设购进文学书

31、550本后至多还能购进y本科普书.依题意得 550 x8 + 12y <10000 ,解得 y <466 j , 由题意取最大整数解,y = 466.所以,至多还能够进466本科普书.5、解:(1)依题意,得 600x4-400 (20 -x) >480x20, 解得X28:至少需要购买甲种原料8 r克.(2)根据题意得:y=9x+5 (20-x), 即 y=4x+100t.k=4>0,y随x的增大而增人,Vx>8,:当x=8时,y最小,购买甲种原料8千克时,总费用绘少. 第六章一元一次不等式组第一节一元一次不等式组的解法2. A3、A4、D5、C6、A7. a&

32、lt;-28. 69、a<4.10、3(x + l)<5xJ 1 7 解:解不等式得.A>-2解不等式HL =W411 仁 d原式不毎式组的解集为-<x4.711、7 分)W:解不等式.Q.W2.解不尊式.C«r>3.:卞不專式级的解簽沖3<xW-2.的解臬在飲釉上衣示为:320 I12.解答:解:x-3(x-2) > 4I + 4x> x -13解得:XS1.解得:x>4,解集为:4 VXS1.整数解为:3,2, 1, 0, 1.!2x + 3>3x,x + 3 x-1 > 1362,解不等式,得 XV3)解不等式,

33、得 x>-4.在同一数轴上表示不等式的解集,得】 43这个不等式组的解集是-4SX <3这个不等式组的整数解的和是.一 4一3-2-1 + 0 + 1 + 2 = -714、解:解不等式x+3>0得x>-3;解不等式2(x-1)1-3得迅1 3<rWl一1是该不等式组的解,£不是该不等式组的解。15、解:由题总可得不等式组:2x6x - 4<0由得,x>3:由得,x<4,故此不等式组的解集为:3VXV4.3.第二节利用一元一次不等式组解决实际问题1. 解:(1)设弟弟每天编x个中国结,则哥哥每天编(x+2)个中国结.7x<287

34、(x+2) >28解得:2VxV4.x取正整数,/eX=3;(2)设哥哥工作m天,两人所编中国结数量相同,依题意得:3 (m+2) =5m,解得:m=3.答:弟弟每天编3个中国结;若弟弟先工作2大,哥哥才开始工作,那么哥哥工作 3天,两人所编中国,结数量相同.2、解:(1)设人、小车每辆的租车费各是乩y元P!tx+2y=1000rx=400l2x+y=1100 解得:1. y=300答:人、小车每辆的租车费各是400 7E. 300尤(2) 240 师生都有座位,租车总辆数每辆车上至少要有一名教师,租车总辆数W6故租车总数爭故6辆设人车辆数是x辆,则租小车(6x)辆尸5x+30(6x)

35、M240f x$4l400x+300(6-x)2300 解得:I xW5x是正整数 x=4或5于是又两种租车方案.方案1:大车4辆小车2辆总租车费用2200 方案2:大 车5辆小车1辆总租车费用2300 可见绘省钱的是方案1解,C1)设改ift 所A类学校的校舍寓實金,万元.改运一所B次学校們校舍需资金 y万元则3.(2分4803x+y=4O0WZWx =90 = 130(1 分伞改逍一所A类学枚的校舍需资金90万元,改适一所B类学校的校念需赛金130万元 亠一 -一 分(2)设A类学校宵®所.则B类学枝有(8-a)所«20<1 十30(8-0)2 210(90 -

36、20" + (130- 30X8 a) S 770解得W.W3 x因为a足1E整数.折以aal. 2. 3<1纟答:有三粹方案.方A类学校1所,B类学校7所方案二:A英学校2所.B类学校6所 方*-:A类学校3所.B类学校5所<254.*« <>> V*/Al !:艺!件.而费用 150 .元$购 B 朋 I60 - * )件.需级用 80 <60 - x) 7C.总费H为ISO “ * 80 (60 - x) - 70 x 4800 2总利润为 w(2S0 * 150 )x * (100 - mX6O-x)-M)x4. 1200 根咖&

37、#169;叭:解Z“46(JO x 1200 工 25003 为幣敢. * 44 45> 46,他有三种采齣方案:方 1,的A小工竺从44件.B笊工竺从16件< 方案2* A VT.21品45件.BCT艺品15件, 方 3:燜A型.艺阳46件,B供I艺M 14件. w3Ox 1200 R6 X的增人向增人. 2|”46时利泡晟人駁人利润为“s 30 x 46 1200 2580 «元6、(1)设足球的单价是x元8x + 14(x+20)=1600 解得 x=60足球单价是60元篮球单价是60+20=80 (元)设购买足球y个,则购买足球(50-q)个n=主如 60a+ 8

38、0(50-a)<3240 由题意得彳60a+ 80(50-a) >3200解得 38<a<40方案1:买足球38个,篮球12个;方案2:买足球39个,篮球11个:方案3:买足球40个,篮球10个;设商家利润为W元,由题意知 w =(60 - 50加 + (80 - 65X50 - a) = -5a+750方案1:买足球38个,篮球12个,商家获利最多.第三单元函数第一章函数基础知识 第一节函数的图象1、B2、A3、C4、D5、C6、D7、C8、B9、D10、2,411、霹:.G)例如;小芳从求出发去书会书风更凰彖屮 小芳从家去直市购物后返回家中第二节确定函数自变量的取值

39、范尉1、B2、C3、A4、D5、D6、C7、xG 且 xHl第二章一次函数第一节一次函数的概念及确定一次函数的解析式1、A2、D3、A4、B5、26、y=2x+l第二节一次两数的图像和性质1、B2、B3、D4、A5、B6、C7、D8、A9、三10、小11、x>l12、二13、解:一次怖数尸kx+b (&0)图彖过点(0, 2),*«b=O,令 y=0,则 X=-2k换数图彖与两坐标轴闱成的三角形面枳为2,A-x2x| - -?|=2,即|-?|=2,2 k k当k>0时,2=2,解得k=l;k当kVO时,2=2,解得k=1.k故此函数的解析式为:y=x+?或尸x+

40、214.解;(I)设直线朋的解析式为y =K 线朋过点 4(1,0).8(0,-2), 応::呵爲.克线朋的解析式为y = 2x-2.(2)设点心的坐标为匕).= 2,y 2 x = 2.辭得.z«2x2-2=2.-.点C 的坐标是(2,2).第三节利用一次函数解决实际问题1、解:(1)设y = kx+b,则有b = 299,2000 + 6 = 235.k = _±_解之,得 125 b = 299.4 . y =x+ 299 1254(2)当x = 1200 时,y =X1200 +299 = 260.6 (克/立方米).125该山山顶处的空气含氧量约为260 6克/立

41、方米.2、1)由图象可知函数图象经过点(2009, 24)和(2011, 26)设怖数的解析式为:jntx+b,(2009k+b=24l2Ullk+b=26,解得:飞二1b 二-1985y与x之间的关系式为尸1985;(2)令x=2012,.*.)2012 1985=27,该市2012年荔技种植面积为27万亩.MxCl>8000(2>当鼻多8.5时由图像可汝y与真的曲败关系走为 尸k"b由已知得 & 5k 心10000.10. 5kb 二8000 b»18500 kTOOO: y-1000x4-1850096009600= 1000 x + 18500工

42、 m 8. gv9 I这弟20郸I车&当天9 00之前能加完代-4、解:实验一:(1)画图象如图所示:v(2rt)所以(2)设V与t的函数关系式V=kt+b, 根据表中数据知:当 t=10 时.V=2; 当 t=20 时,V=5,2=10k+b5=20k+b所以V与t的函数关系式为v£tl,由题希盐"00, 解得丿°亠33必3 3所以337杪后.量筒中的水会满面开始溢出;一小时会漏水畚6。曰7 (亳克)=0*(千克);故答案为:0017;实验二:因为小李同学接水的最筒装满后开始溢出,最筒内的水不再发生变化, 所以图象中会出现与横轴“平行”的部分.5、

43、9;.Ml (1) SftM析式2 y-O.38x丿 042x-52(2) 当y » 78.8 W0.42x-52 = 78.8r=200这个家ji的实际用电*是zoo at(3) 30.4 7ti 57J X-答,小芳和小华寧一个月的实付金額分别为304元和57:元-6、解:(1)批发购进乌鱼所需总金额y (元)与进货彊x( T克)之间的函数关系式 pGx (20<x<40)M 24x (x>40).:(2)设该经销商购进乌鱼xT克,则购进草鱼(75-x)克.所需进货费用为w 元.由题意得:x>4089%X (75-x) +95%k93%X75解得x>

44、50.由题意得 w=8 (75 -x) +?4x=16x+600.V16>0, Aw的值随x的增大而堀大.当 x=50 时,75 -x=25, Wm=1400 (元)答:该经销商应购进草鱼25 T克,乌鱼50 T-克,才陡使进货费用最低,最低费丿II 为 1400 7C解:2238(2)点F的横坐标为;"了2 十(38 十2)=5 8 打58, 72), E(4, 0)EF 解析式:ft y=k"b(kA0)(5.8k+b=7214k+-b=0解得J k-40 b=-160-w.jf40x-160<4<xW5.&) 快艇出发3小时或34小时两船相距

45、12千米 3、(1)由图2得,甲从A步行到D.用了 0 3h步行了 161am 则甲步行的速度=1=20.8(km/h),而甲步行到C共用了 18h,步行了 2.6km,所以甲在D景点逗留的时间=1 80 8-2,6k6-l-05=0.5 (h),2所以甲在每个景点逗留的时间为0 5h;甲在C景点逗留0 5h,从2.3h开始步行到3h,步行了(32.3) x2=1.4km,即回到A处时共步行了 4km,画右图:(2) 由(1)得甲从 C 到 A 步行了 (3 - 2 3) x2=l 4km,而C到A的路程为0 8km,所以C, E两点间的路程为0 6km;(3) 他们的约定能实现.理由如下:T

46、C, E两点间的路程为0.6km,走EBEC的¥各程为0 4+0 4+0 6=1.4(km),走EBC的¥各程为0 4+1 3=1 7 (km),乙游览的绘短线路为:ATDTCTETBTETA (或ATETBTETCTDTA),总 行程为 1.6+1+0 6+0 4x2+0.8=4.8 (kin),乙游完三个景点后回到A处的总时间=3x0 54JX3 1 (h),3而甲用了 3小时,乙比甲晚0.1小时,即6分钟到A处,他们的约定能实现.O 0*8' ' l.r 2.3375)第四节一次两数与方程、不等式的关系1、C2、A3、C4、A5、x=1第三章反比例函数

47、第一节反比例函数的概念及确定反比例函数的解析式1、D2、C3、2,544、卩=X5、26、心x第二节 反比例隨数的图像和性质1、A2、C3、D4、A5、A6、D7、D8、D9、1,2,410> (4, 2)212、解:(1)把(一2, 8)代入y =史,得8 =冬,解得:k=-16o x-2这个反比例函数的解析式为y =-兰。X(2)yi<y2o理由如下:k=16V0在每一个彖限内,函数值y随x的增大而增大。点(2, yi), (4. yj都在第四象限,且2V4.yi<y2o13、解:(1) I由表中所给的x、y的对应值的符号均相反,所给出的几个式子中只有尸§符合条

48、件,X故答案为:尸X(2)由表中所给的x、y的对应值的符号均相反,此函数图象在二、四象限,Vxy= ( - 6) xl= ( - 5) xl 2= - 6»所给出的几个式子中只有y=§符合条件x14、无第三节利用反比例函数解决实际问题1、C2、C3、解:(1) 电流I(A)是电阻R (0)的反比例函数:设 1= (k*0) .1 分R把(4, 9)代入得:k=4x9=36.3 分1.4分R(2)方法一:当 R=10Q 时,1=3 6#4.6 分电流不可能是4A.7分方法二:V10x4=40工36.6 分当R=10Q时,电流不可能是4A.7分4、解:(1)每天运Mxm3时,需

49、时间y二列天:X(2) 5辆拖拉机每天能运5X12n?=60m3,则尸12004-60=20, U卩需要20天运完:(3) 假设需要増加n辆,根据题意:8X604-6X12 (n+5) $1200, n $5,答:至少需要增加5辆。5、2C0(1> 310元 (2) ? = , p随才的増大而减小卩 x<3)甲商店:X100;乙商店0.6x当x-100>06x.丽25CVY4伍时,乙换后划算。当X-100V06工.乐20CW*25C时,甲帝店划算,当X-100=0代 訊药家育店同划*6、解:(1)设反比例函数解析式为匸 将(25, 5)代入解析式得,k=25X6=150,15

50、0函数解析式为尸 (x>15)o150y=将y=10代入解析式得,10 ,解得x=15o AA (15, 10)。设正比例函数解析式y=nx,_10 = 2将A (15, 10)代入上式,得 15亍。2正比例函数解析式为尸亍x (OWxW15)。|x(0<x<15)综上所述,从药物释放开始.y与x之间的函数关系式为孕(x>15)2(2)由 x解得x=75 (分钟),消毒开始的时间是在15分钟时,/.75-15=60 (分钟)。 答:从消毒开始,至少在60分钟内,师生不能进入教室。 第四节反比例函数和一次函数的综合题1、B2、A3、C4、A5、C6、A7、238、-5<x<-l 或x>09、解:设反比例函数的解析式为y上(k=0),x把 A (1. a)代入y=2x 得 a=2,则A点坐标为(1, 2),把 A (b 2)代入 y=±得 k=lx2=2,所以反比例函数的解析式为尸IX10、解:(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论