2020年湖北省武汉市中考数学试卷及答案解析_第1页
2020年湖北省武汉市中考数学试卷及答案解析_第2页
2020年湖北省武汉市中考数学试卷及答案解析_第3页
2020年湖北省武汉市中考数学试卷及答案解析_第4页
2020年湖北省武汉市中考数学试卷及答案解析_第5页
免费预览已结束,剩余23页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2020年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1 . (3分)实数-2的相反数是()A.2B.-2C. 1D. - 1222. (3分)式子v?在实数范围内有意义,则 x的取值范围是()A. x0B , x- 2D. x23. (3分)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于 1B.两个小球的标号之和等于 6C.两个小球的标号之和大于 1D.两个小球的标号之和大于 64. (3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称

2、性.下列汉字是轴对称图形的是()A舍 B我C.中D华5. (3分)如图是由4个相同的正方体组成的立体图形,它的左视图是()6. (3分)某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A. 1B . 1C. 1D. 167. (3分)若点A (aT, yi), B (a+1, y2)在反比例函数 y= ?(ky2,则a的取值范围是()A.av1B.TvavlC.a1D.avT 或 a18. (3分)一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第 4min到第24min内既进水又出水,从第 24m

3、in开始只出水不进水,容器内水量 y (单位:L)与时间x (单位:min)之间的关系如图所示,则图C. 36D. 38第3页(共22页)9. (3分)如图,在半径为 3的。中,AB是直径,AC是弦,D是??中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A . 5 a/3B. 3v3C. 3V2D. 4v2210. (3分)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的 3X2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的 4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正

4、方形组成的 6X6方格纸片,将“ L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有 n种不同放置方法,则n的值是()(4)A. 160B. 128C. 80D. 48二、填空题(共6小题,每小题3分,共18分)11. (3分)计算,(-3) 2的结果是 12. (3分)热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间 (单位:h),分别为:4, 3, 3, 5, 5, 6.这组数据的中位数是 13. (3分)计算2?+?-3?2-?2的结果是14. (3分)在探索数学名题“尺规三等分角” 的过程中,有下面的问题:如图,AC是? ABCD的对角线,点 E在AC上,AD

5、=AE=BE, /D=102 ,则/ BAC的大小是 215. (3 分)抛物线 y=ax +bx+c(a,b, c 为常数,a0)的根为整数, 则p的值只有两个.其中正确的结论是 (填写序号)16. (3分)如图,折叠矩形纸片 ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形 CDEF的面积是AN三、解答题(共8小题,共72分)17. (8 分)计算:a3?a5+ (3a4) 2 + a2.18. (8分)如图直线EF分别与直线 AB,CD交于点 巳F . EM平分/ BEF, FN平分/ CFE , 且 EM / FN ,求证:A

6、B / CD.19. (8分)为改善民生:提高城市活力,某市有序推行“地摊经济”改策.某社区志愿者随机抽取该社区部分居民,按四个类别:A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如图两幅不完 整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了 名居民进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是;(2)将条形统计图补充完整;(3)该社区共有2000名居民,估计该社区表示“支持”的B类居民大约有多少人?各类居民人赞I条形统计图 各类居民人数扇形统计图20. (8分)在8X5的网格中建立如图的平面直角坐标

7、系,四边形 OABC的顶点坐标分别为O (0, 0), A (3, 4), B (8, 4), C (5, 0).仅用无刻度的直尺在给定网格中按下列步 骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90 ,画出对应线段 CD;第4页(共22页)(2)在线段AB上画点E,使/ BCE = 45 (保留画图过程的痕迹)(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.21. (8分)如图,在 RtAABC中,/ ABC = 90 ,以 AB为直径的。交AC于点D, AE与过点D的切线互相垂直,垂足为 E.(1)求证:AD平分/BAE;(2)若 CD = DE,求 sin/BA

8、C 的值.100件.A城生产产品的总成本 y22. (10分)某公司分别在 A, B两城生产同种产品,共(万元)与产品数量 x (件)之间具有函数关系 y=ax2+bx.当x= 10时,y = 400;当x=20时,y= 1000. B城生产产品的每件成本为 70万元.(1)求a, b的值;(2)当A, B两城生产这批产品的总成本的和最少时,求 A, B两城各生产多少件?(3)从A城把该产品运往 C, D两地的费用分别为 m万元/件和3万元/件;从B城把该产品运往C, D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A, B两城总运费的和的最

9、小值 (用含有m的式子表示).23. (10分)问题背景 如图(1),已知ABCsADE,求证: ABDsace;尝试应用 如图(2),在4ABC 和4ADE 中,/ BAC=Z DAE = 90 , /ABC=/ADE =30,AC与DE相交于点F ,点D在BC边上,?-?诟?= V3,求赤?勺值;拓展创新如图(3), D 是4ABC 内一点,/ BAD = /CBD = 30 , / BDC =90 , AB=4, AC = 2v3,直接写出 AD的长.第5页(共22页)24(12分)将抛物线 C: y= (x-2) 2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度

10、得到抛物线 C2.(1)直接写出抛物线 Ci, C2的解析式;(2)如图(1),点A在抛物线Ci (对称轴l右侧)上,点B在对称轴l上, OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)如图(2),直线y=kx (kw 0, k为常数)与抛物线 C2交于E, F两点,M为线段 4EF的中点;直线y=-并与抛物线C2交于G, H两点,N为线段GH的中点.求证:直线MN经过一个定点.第#页(共22页)参考答案与试题解析、选择题(共10小题,每小题3分,共30分)1. . (3分)实数-2的相反数是()1D.)D. x2A. 2B. - 2C.-2【解答】解:实数-2的相反数是2,故选:A

11、.2. (3分)式子v?”在实数范围内有意义,则 x的取值范围是(A . x0B , x- 2【解答】解:由题意得:x- 20,解得:x2,故选:D .3. (3分)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于 1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于 6【解答】解:二.两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1, 2, 3,从这两个口袋中分别摸出一个小球,两个小球的标号之和等于 1,是不可能事件,不合题意

12、;两个小球的标号之和等于 6,是随机事件,符合题意;两个小球的标号之和大于 1,是必然事件,不合题意;两个小球的标号之和大于 6,是不可能事件,不合题意;故选:B.4. (3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()AB我C中D华【解答】解:A、不是轴对称图形,不合题意;第7页(共22页)B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.5. (3分)如图是由4个相同的正方体组成的立体图形,它的左视图是(第17页(共22页)【解答】解:从左边看上下各一个小正方形.故选:A.6. (3分)某班从甲

13、、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()D.1C.一6【解答】解:根据题意画图如下:公金令徐共用12种等情况数,其中恰好选中甲、乙两位选手的有2种,21则恰好选中甲、乙两位选手的概率是 一二-;126故选:C.7. (3分)若点A (aT, y1), B (a+1, y2)在反比例函数 y= ?(ky2,则a的取值范围是(A. a 1【解答】解:.kv 0,,在图象的每一支上,y随x的增大而增大,D. a1当点(a-1, yi)、(a+1, y2)在图象的同一支上,-yiy2,a 1a+1,此不等式无解;当点(a-1, yi)、(a+i, y2)在

14、图象的两支上,-yiy2,a Tv 0, a+1 0,解得:-1vav1,8. (3分)一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第 4min到第24min内既进水又出水,从第 24min开始只出水不进水,容器内水量 y (单位:L)与时间x (单位:min)之间的关系如图所示,则图【解答】解:由图象可知,进水的速度为:C. 36D. 3820+4= 5 (L/min),出水的速度为:5- ( 35 20) + ( 16 4) = 3.75 (L/min),第 24 分钟时的水量为:20+ (5- 3.75) X ( 24- 4) =45

15、 (L),a= 24+45+ 3.75 = 36.故选:C.9. (3分)如图,在半径为 3的。中,AB是直径,AC是弦,D是??就中点,AC与BD交于点E.若E是BD的中点,则AC的长是()D. 4V2A. 5A/3B. 3V3C. 3会【解答】解:连接OD,交AC于F, .D是???中点, ODXAC, AF = CF, ./ DFE = 90 , . OA= OB, AF=CF,-1 OF= 2BC, AB是直径, ./ ACB=90 ,在 EFD和 ECB中/ ?/ ?90 / ?/ ? ? . EFDA ECB (AAS),DF= BC,一 1OF= 2dF,.OD=3,.OF= 1

16、,BC= 2,在 RtAABC 中,AC2=AB2 BC2, AC=,?? ????= V62 - 22 = 4v2,故选:D.10. (3分)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的 3X2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的 4个小正方形,共有如图(3)中 的4种不同放置方法.图(4)是一张由36个小正方形组成的 6X6方格纸片,将“ L” 形纸片放置在图(4)中,使它恰好盖住其中的 4个小正方形,共有 n种不同放置方法, 则n的值是()(4)A. 160B. 128C. 80D. 48【解答

17、】解:观察图象可知(4)中共有4X5X 2=40个3X2的长方形,由(3)可知,每个3X2的长方形有4种不同放置方法,贝U n的值是40X4= 160.故选:A.二、填空题(共6小题,每小题3分,共18分)11. (3分)计算,(-3) 2的结果是3 .【解答】解:V(-3) 2 = v9=3.故答案为:3.12. (3分)热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间 (单位:h), 分别为:4, 3, 3, 5, 5, 6.这组数据的中位数是4.5 .【解答】解:将数据重新排列为:3, 3, 4, 5, 5, 6,_ 4+5所以这组数据的中位数为 =4.5,故答案为:4.5.

18、13. (3分)计算2?+?-3?2-?2的结果是1?-? 解:原式=2(?-?)(?+?)(?-?)?-3?(?+?)(?-?)2?-2?-?+3? (?+?)(?-?)?+?(?+?)(?-?)1?故答案为:1?-?14. (3分)在探索数学名题“尺规三等分角” 的过程中,有下面的问题:如图,AC是? ABCD的对角线,点 E在AC上,AD=AE=BE, /D=102 ,则/ BAC的大小是 26【解答】解:二四边形 ABCD是平行四边形, ./ABC=/ D= 102 , AD=BC, ,AD= AE=BE,BC= AE=BE, ./ EAB=/EBA, /BEC=/ECB, . / B

19、EC=Z EAB+ZEBA = 2Z EAB, ./ ACB=2Z CAB, ./ CAB+/ACB=3/CAB=180 - Z ABC= 180 - 102 , ./ BAC=26 ,故答案为:26 .215. (3 分)抛物线 y=ax +bx+c (a, b, c 为常数,a0)的根为整数,则p的值只有两个.其中正确的结论是(填写序号).【解答】解:二.抛物线y=ax2+bx+c (a, b, c为常数,av 0)经过A (2, 0), B ( - 4,0)两点,.当y=。时,0= ax2+bx+c的两个根为xi = 2, x2= - 4,故正确;该抛物线的对称轴为直线x= 2+(-4)

20、= -1,函数图象开口向下,若点C (5, yi), D(兀,y2)在该抛物线上,则 yiy2,故错误;当x= - 1时,函数取得最大值 y= a - b+c,故对于任意实数t,总有at2+bt+c a- b+c, 即对于任意实数t,总有at2+bt0)的根为整数,则两个根为-3和1或-2和0或-1和-1,故p的值有三个,故 错误;故答案为:16. (3分)如图,折叠矩形纸片 ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,1 21AD=2 .设AM的长为t,用含有t的式子表示四边形CDEF的面积是_4?- 4?+ 1【解答】解:连接DM,过点E作EGLBC于点G,设 DE = x=

21、 EM ,贝U EA= 2 x,ae2+am2=em2,(2-x) 2+t2=x2,?斛付x= 4+1,-DE= A,.折叠矩形纸片 ABCD,使点D落在AB边的点M处, EFXDM ,Z ADM + Z DEF= 90 , EG, AD, ./ DEF + Z FEG=90 , ./ ADM =Z FEG, .tan/ADM =?力?=? ?2 二FG =?2CC CL ?3. CG=DE=E,.CF=佟-?+ 142.111S 四边形 CDEF= 2 ( CF + DE) X 1= 4 ?- 4t+1 .故答案为:-?- -t+1. 44三、解答题(共8小题,共72分)17. (8 分)计

22、算:a3?a5+ (3a4) 2 + a2.【解答】解:原式=(a8+9a8) + a2=10a8 + a2= 10a6.18. (8分)如图直线EF分别与直线 AB,CD交于点E, F . EM平分/ BEF, FN平分/ CFE , 且 EM / FN ,求证:AB / CD.【解答】 证明:EM/FN, ./ FEM = Z EFN,又EM平分/ BEF, FN平分/ CFE , ./ FEB = Z EFC .AB/ CD.19. (8分)为改善民生:提高城市活力,某市有序推行“地摊经济”改策.某社区志愿者 随机抽取该社区部分居民,按四个类别:A表示“非常支持”,B表示“支持”,C表示

23、“不关心”,D表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如图两幅不完 整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了60名居民进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是 6;(2)将条形统计图补充完整;(3)该社区共有2000名居民,估计该社区表示“支持”的B类居民大约有多少人?各类居民人数扇形统计图第19页(共22页)【解答】解:(1)这次抽取的居民数量为 9+15% = 60 (名),扇形统计图中,D类所对应的扇形圆心角的大小是c 1360 *而=6;故答案为:60, 6 ;(2) A 类别人数为 60- (36+9+1 ) = 14 (名)

24、,补全条形图如下:(3)估计该社区表示“支持”的B类居民大约有2000 X 60 = 1200 (名)20. (8分)在8X5的网格中建立如图的平面直角坐标系,四边形 OABC的顶点坐标分别为O (0, 0), A (3, 4), B (8, 4), C (5, 0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90 ,画出对应线段 CD;(2)在线段AB上画点E,使/ BCE = 45 (保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.【解答】解:(1)如图所示:线段 CD即为所求;(2)如图所示:/ BCE

25、即为所求;(3)连接(5, 0), (0, 5),可得与AC的交点F,点F即为所求,如图所示:21. (8分)如图,在 RtAABC中,/ ABC = 90 ,以 AB为直径的。交AC于点D, AE与过点D的切线互相垂直,垂足为 E.(1)求证:AD平分/BAE;(2)若 CD = DE,求 sin/BAC 的值.【解答】(1)证明:连接OD,如图,. DE为切线,ODXDEDE AE, .OD /AE, ./ 1 = Z ODA, .OA= OD, ./ 2=Z ODA,.Z 1 = Z 2,AD 平分/ BAE;(2)解:连接BD,如图,. AB为直径, ./ ADB = 90 ,/ 2+

26、/ABD = 90 , / 3+/ABD = 90 / 2=/ 3,./1=携;加/3=感而 DE = DC,AD= BC,设 CD=x, BC=AD = y, . / DCB = Z BCA, / 3=/ 2,CDBA CBA, .CD: CB = CB: CA,即 x: y=y: (x+y),整理得x2+xy+y2=0,解得x=-1+ v5.-1- v5一2一y 或 x= -2y(舍去),sin/ 3=?V?v5-1-2即sin / BAC的值为二1222. (10分)某公司分别在 A,B两城生产同种产品,共100件.A城生产产品的总成本 y(万元)与产品数量 x (件)之间具有函数关系y

27、=ax2+bx.当 x= 10 时,y = 400;当 x第23页(共22页)=20时,y= 1000. B城生产产品的每件成本为70万元.1 )求 a , b 的值;2 )当 A , B 两城生产这批产品的总成本的和最少时,求A, B 两城各生产多少件?(3)从A城把该产品运往 C, D两地的费用分别为 m万元/件和3万元/件;从B城把该产品运往 C, D 两地的费用分别为 1 万元 /件和 2 万元 /件 C 地需要 90 件, D 地需要 10件, 在( 2) 的条件下, 直接写出 A, B 两城总运费的和的最小值 (用含有 m 的式子表示)解: ( 1)由题意得:100?+ 10?=

28、400400?+ 20?= 1000解得: ?= 1?= 30. . a= 1, b= 30;(2)由(1)得:y=x2+30x,设 A, B 两城生产这批产品的总成本为 w ,贝U w=x2+30x+70 (100 -x)= x2- 40x+7000,=(x-20) 2+6600,由二次函数的性质可知,当x= 20时,w取得最小值,最小值为 6600万元,此时100 - 20=80.答: A 城生产 20 件, B 城生产 80 件;(3)设从A城运往C地的产品数量为n件,A, B两城总运费的和为 P,则从A城运往D地的产品数量为(20-n)件,从B城运往C地的产品数量为(90- n)件,从

29、B城运往D地的产品数量为(10-20+n)件,2100? 020 + ? 0解得 10 2, 10WnW20时,P随n的增大而增大,则n = 10时,P取最小值,最小值为 10 (m-2) +130 = 10m+110.第18页(共22页)答:0vmW2时,A, B两城总运费的和为(20m+90)万元;当 m2时,A, B两城总 运费的和为(10m+110)万元.23. (10分)问题背景 如图(1),已知ABCsADE,求证: ABDsACE;尝试应用 如图(2),在4ABC 和4ADE 中,/ BAC=/DAE = 90 , /ABC=/ADE =30,AC与DE相交于点F ,点D在BC边

30、上,?一v3,?.求赤?勺值;拓展创新如图(3),【解答】问题背景./ bad = z cae,? ? ?D 是4ABC 内一点,/ BAD = /CBD = 30 , / BDC =90 , AB证明: abcaade,? ? = , / BAC = / DAE , ? ?abda ace;尝试应用解:如图1,连接EC,. Z BAC=Z DAE = 90o , Z ABC = Z ADE=30o ,ABCA ADE,由(1)知 abda ace,A/3, z ace=z abd = z ade,? ?一=一:? ?在 RtAADE 中,/ ADE = 30?一? ?X =? ? / ADF = / ECF , / AFD = / EFC ,ADFA ECF,? ?=3.? ?拓展创新 解:如图2,过点A作AB的垂线,过点 D作AD的垂线,两垂线交于点 M,连接BM , . / BAD = 30 ,/ DAM = 60 , ./ AMD = 30 , ./ AMD =/ DBC,又. / ADM =Z BDC = 90 , . BDCA MDA,? ?=,?又/ BDC = Z ADM , / BDC+ / CDM = /

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论