结合小学数学教学新课改浅谈初等数论教学改革_第1页
结合小学数学教学新课改浅谈初等数论教学改革_第2页
结合小学数学教学新课改浅谈初等数论教学改革_第3页
结合小学数学教学新课改浅谈初等数论教学改革_第4页
结合小学数学教学新课改浅谈初等数论教学改革_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 2009年第2期继ji xu ji a o yu yan ji u 续教育研究149结合小学数学教学新课改浅谈初等数论教学改革刘颖(哈尔滨学院教育科学学院, 黑龙江哈尔滨150086摘要:对师范院校的小教专业开设初等数论, , 并且提出如何开设好该课程的教学建议, 其两者之间的关系。; 另一方面有利于将要。教师要有机地将初等数论的学与教结合起来, 通过教师和, 进一步养成科学的人生观、价值观。关键词:; 小学数学; 创造性思维; 创造性能力; 数学思想方法一、初等数论概况数论是一门古老而基础的数学, 至今仍有许多没有解决的问题, 一些问题的解决对于现代数学的发展起到了重要的推动作用, 也产生

2、了一些直接与数学有关的新的重要的数学分支, 而且在现代信息技术中有很重要的应用。在日常生活中, 也常常会遇到数论的一些问题。初等数论是研究整数最基本的性质, 是一门十分重要的数学基础课程, 所以高等院校的本科生在可能的情况下学习数论知识是有益的, 一方面通过这些内容加深对数的性质的了解, 更深入地理解某些其他邻近学科; 另一方面也许更重要的是可以加深他们的数学训练, 这些训练在很多方面是有益的。同时, 学习一些数论的发展史也是很有好处的, 尤其是中国古代和近代对数论领域的贡献。目前大学中的数论课程教学内容比较陈旧, 教学方法也比较单一, 这对于提高数论教学质量十分不利, 为我们培养具有灵活思维

3、能力、具有创造力的适应小学数学新课程标准要求的未来小学数学教师更没有益处。二、初等数论的基本内容和思想方法初等数论以整除和同余理论为基础, 主要研究整数性质和不定方程。初等数论貌似简单, 但真正掌握并非易事。它的内容严谨简洁, 方法奇巧多变, 蕴含了丰富的数学思想方法, 其数学思想方法又往往隐含在数学知识和问题解决的过程中。收稿日期:2008-10-08从某种程度上可以说, 初等数论是数学中“理论与实践”相结合得最完美的基础课程, 小学数学中许多重要思想、概念、方法与技巧都是从整数性质的深入研究而不断丰富和发展起来的。所以在深入研究数论过程中, 要仔细体会构造性和技巧性的证明思想。三、小学初等

4、数论初步教学的概况在小学数学学习过程中, 初等数论的知识和思想方法是常见的。教师在日常教学中要给予足够的重视。随着新课程改革的逐步深入, 初等数论知识和思想方法, 一方面出现在日常教学中, 另一方面是以竞赛的形式出现的, 后者更为突出。对于前者根据课标, 它是为对数学有兴趣和希望进一步提高数学素养的学生而设置的, 所涉及的内容反映了某些重要的数学思想方法, 有助于学生进一步打好数学基础, 提高应用意识, 有助于学生终身的发展, 有助于扩展学生的数学视野, 有助于提高学生对数学的科学价值、应用价值、文化价值的认识。对于后者, 初等数论在奥林匹克竞赛中占有愈来愈重要的地位, 对提高小学生的数学素养

5、很有帮助。致力于数学竞赛的教师而言, 必须明确数论的基本结构, 它包括整除理论, 同余理论和不定方程。整数集对于加法、减法、乘法运算是封闭的, 但对于除法是不封闭的, 因而研究整数之间的除法成了数论中的重要部分。同余是初等数论中的一门语言, 同余概念的出发点:考虑它们除以某个不小于2的正整数所得的余数, 依据余数的不同将所有的整数分类。项目来源:哈尔滨学院2008年院级教学改革项目。作者简介:刘颖(1969 , 女, 辽宁北镇人, 哈尔滨学院教育科学学院副教授, 硕士, 主要从事初等数论研究。 150继续教育研究2009年第2期(2 假设:给日期, D =第“N ”年“m ”月“d ”日; 用

6、数字代表星期:星期日=0, 星期一=1, 星期二=2, 星期三=3, 星期四=4, 星期五=5, 星期六=6;W (D 表示日期D 的星期数。(3 结论:根据所学的理论知识, 可求得:W(D 值得注意的是, 在数学竞赛中, 教师主要强调数论知识的技巧, 而在日常教学中要注意数论思想方法的教学。四、初等数论初步教学的方法和建议小学数学课程标准教学的总体要求是:力求深入浅出, 通俗易懂, 进一步提高学生分析和解决问题的能力, 让学生掌握和体会一些重要的概念、结论和思想方法, 体会数学的作用, 发展应用意识。教学内容的总体要求本专题学生通过具体问题来学习有关整数和整除的知识, 简单同余方程、, 给出

7、以下几点具体的教学建议:1. 由于整数的整除式是学生在操作上比较熟悉, 而在理论上比较生疏的内容, 教师可以只讲一些主要的方法和性质, 其他的一些性质则由学生经过讨论或自主探索完成。2. 孙子定理由特解而后求通解的想法和建立La 2grange 插值公式是一样的, 因此列入建立插值公式一节有助于学生加强注意有关内容联系的意识。3. 剩余类环中会出现零因子, 对于开阔学生关于运算的眼界是有益的, 但是理解可能难一点, 是否安排探索, 教师可以酌情处理。4. 多项式整除的方法和性质与整数的整除性质几乎完全平行, 可以安排学生进行探索。多项式的竖式除法是一个实行多项式除法的有效方式, 与整数的竖式除

8、法类似, 可以作为附录列出。5. 介绍数论领域的名人进行教学。教学的目的是培养学生对数论的兴趣, 树立正确的人生观、价值观。例如:介绍费马大定理的证明者安德鲁怀尔斯, 从科学的态度对待学习。此类例子还有许多, 教师要适当适时介绍给学生。6. 根据所学内容特点和理论知识, 对于例子进行探索学习。例如:(星期的计算 来认识带余除法, 理解同余和剩余类的概念及意义, 探索剩余类的运算(加法和乘法 , 并且理解它的实际意义。体会剩余类运算的异同(会出现零因子 。探索学习的步骤:问题假设结论验证证明(1 看一下日历就能知道今天是星期几, 但是如果问你“中华人民共和国成立的日子”1949年10月1日是星期

9、几, 你的出生日期是1985年2月4日, 是星期几呢, 等等, 你就说不出来了。d +(13m -1 /5+y +y /4+c /4-2c (m od 7 , 其中c, y 由下式确定:N =100c +y, 0y <100.(4 :, 。这一日期应“1991年。所以C =19, y =m d :W(D 2+90/5+91+91/4-382+18+91+22+4-381(m od 7 .即由公式也算出是星期一。(5 证明:证明的途径是这样的:先求出第“N ”年的“1”月“1”日的星期数, 然后求第“N ”年“m ”“1”日的星期数, 最后求第“N ”年月日的星期数。证明的具体过程略, 有

10、兴趣的读者请参考。这种探索学习有利于贯彻新课程的基本理念, 倡导积极主动, 勇于探索的学习方式, 发展学生的数学应用意识。教师应根据学生的能力来进行教学, 还有许多其他的实际例子来训练学生的思维和数学素质。7. 将数论知识和思想方法与其他知识的学习联系起来。例如:勾股定理与费马大定理, 当n 3时, 没有正整数解。进行对比来教学, 更有利于学生拓展眼界, 增加学习的兴趣。还有一些数论的知识可以与其他知识联系起来学习, 需要教师去发现。8. 使学生能成为课堂的主人, 在民主、宽松、自由的环境里体验数学。9. 增强学生自信、培养学生自主参与意识、参与能力。10. 生活中充满数学, 让学生体验数学之乐。五、结束语教师要充分把握好初等数论的学与教之间的关系, 抓住主要内容、基本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论