江苏省南京市2016-2017学年高一数学下学期期末试卷_第1页
江苏省南京市2016-2017学年高一数学下学期期末试卷_第2页
江苏省南京市2016-2017学年高一数学下学期期末试卷_第3页
江苏省南京市2016-2017学年高一数学下学期期末试卷_第4页
江苏省南京市2016-2017学年高一数学下学期期末试卷_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上 高一(下)期末数学试卷一、填空题(共14小题,每小题5分,满分70分)1直线y=x2的倾斜角大小为 2若数列an满足a1=1,且an+1=2an,nN*,则a6的值为 3直线3x4y12=0在x轴、y轴上的截距之和为 4在ABC中,若a=,b=,A=120,则B的大小为 5不等式的解集是 6函数y=sinxcosx的最大值为 7若函数y=x+,x(2,+),则该函数的最小值为 8如图,若正四棱锥PABCD的底面边长为2,斜高为,则该正四棱锥的体积为 9若sin(+)=,(,),则cos的值为 10已知a,b,c是三条不同的直线,是三个不同的平面,那么下列命题中正确的

2、序号为 若ac,bc,则ab; 若,则;若a,b,则ab; 若a,则11设等比数列an的公比q,前n项和为Sn若S3,S2,S4成等差数列,则实数q的值为 12已知关于x的不等式(x1)(x2a)0(aR)的解集为A,集合B=(2,3)若BA,则a的取值范围为 13已知数列an满足a1=1,且an+1an=2n,nN*,若+193n对任意nN*都成立,则实数的取值范围为 14若实数x,y满足xy0,且+=1,则x+y的最小值为 二、解答题(共6小题,满分90分)15已知sin=,(,)(1)求sin()的值;(2)求tan2的值16如图,直三棱柱ABCA1B1C1中,CA=CB,M,N,P分别

3、为AB,A1C1,BC的中点求证:(1)C1P平面MNC; (2)平面MNC平面ABB1A117已知三角形的顶点分别为A(1,3),B(3,2),C(1,0)(1)求BC边上高的长度;(2)若直线l过点C,且在l上不存在到A,B两点的距离相等的点,求直线l的方程18如图,在圆内接ABC,A,B,C所对的边分别为a,b,c,满足acosC+ccosA=2bcosB(1)求B的大小;(2)若点D是劣弧上一点,AB=3,BC=2,AD=1,求四边形ABCD的面积19某商场在一部向下运行的手扶电梯终点的正上方竖直悬挂一幅广告画如图,该电梯的高AB为4米,它所占水平地面的长AC为8米该广告画最高点E到地

4、面的距离为10.5米最低点D到地面的距离6.5米假设某人的眼睛到脚底的距离MN为1.5米,他竖直站在此电梯上观看DE的视角为(1)设此人到直线EC的距离为x米,试用x表示点M到地面的距离;(2)此人到直线EC的距离为多少米,视角最大?20已知等差数列an和等比数列bn,其中an的公差不为0设Sn是数列an的前n项和若a1,a2,a5是数列bn的前3项,且S4=16(1)求数列an和bn的通项公式;(2)若数列为等差数列,求实数t;(3)构造数列a1,b1,a2,b1,b2,a3,b1,b2,b3,ak,b1,b2,bk,若该数列前n项和Tn=1821,求n的值2016-2017学年江苏省南京市

5、高一(下)期末数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1直线y=x2的倾斜角大小为60【考点】I2:直线的倾斜角【分析】由于直线的斜率等于,设倾斜角等于,则 0180,且tan=,由此求得的值【解答】解:由题意得:直线的斜率是:k=,设倾斜角等于,则 0180,且tan=,=60,故答案为 602若数列an满足a1=1,且an+1=2an,nN*,则a6的值为32【考点】88:等比数列的通项公式【分析】利用等比数列的通项公式即可得出【解答】解:数列an满足a1=1,且an+1=2an,nN*,则a6=125=32故答案为:323直线3x4y12=0在x轴、y轴

6、上的截距之和为1【考点】IE:直线的截距式方程【分析】直线3x4y12=0化为截距式: =1,即可得出【解答】解:直线3x4y12=0化为截距式: =1,直线3x4y12=0在x轴、y轴上的截距之和=43=1故答案为:14在ABC中,若a=,b=,A=120,则B的大小为45【考点】HP:正弦定理【分析】由已知及正弦定理可得sinB,结合ba,B为锐角,即可得解B的值【解答】解:a=,b=,A=120,由正弦定理,可得:sinB=,ba,B为锐角,B=45故答案为:455不等式的解集是x|2x1【考点】7E:其他不等式的解法【分析】由方程化为x1与x+2的乘积为负数,得到x1与x+2异号,转化

7、为两个一元一次不等式组,求出不等式组的解集即可得到原不等式的解集【解答】解:方程化为(x1)(x+2)0,即或,解得:2x1,则不等式的解集为x|2x1故答案为:x|2x16函数y=sinxcosx的最大值为【考点】HW:三角函数的最值【分析】把给出的函数提取,由两角差的正弦公式化积,则函数的最大值可求【解答】解:y=sinxcosx=函数y=sinxcosx的最大值为故答案为:7若函数y=x+,x(2,+),则该函数的最小值为4【考点】7F:基本不等式【分析】变形利用基本不等式即可得出【解答】解:x(2,+),x+20y=x+=x+2+222=62=4,当且仅当x=1时取等号,故该函数的最小

8、值为4,故答案为:48如图,若正四棱锥PABCD的底面边长为2,斜高为,则该正四棱锥的体积为【考点】LF:棱柱、棱锥、棱台的体积【分析】利用已知中,正四棱锥底面正方形的边长为2,斜高为,求出正四棱锥的高PO,代入棱锥的体积公式,即可求得答案【解答】解:如图,正四棱锥的高PO,斜高PE,则有PO=,正四棱锥的体积为V=2,故答案为:9若sin(+)=,(,),则cos的值为【考点】GI:三角函数的化简求值【分析】利用同角三角函数关系式以及和与差构造即可求解【解答】解:sin(+)=,利用和与差构造即可求解(,),+(,)cos(+)=那么:cos=cos=cos(+)cos+sinsin(+)=

9、故答案为:10已知a,b,c是三条不同的直线,是三个不同的平面,那么下列命题中正确的序号为若ac,bc,则ab; 若,则;若a,b,则ab; 若a,则【考点】LP:空间中直线与平面之间的位置关系【分析】在中,a与b相交、平行或异面; 在中,与相交或平行;在中,由线面垂直的性质定理得ab;在中,由面面平行的判定定理得【解答】解:由a,b,c是三条不同的直线,是三个不同的平面,知:在中,若ac,bc,则a与b相交、平行或异面,故错误; 在中,若,则与相交或平行,故错误;在中,若a,b,则由线面垂直的性质定理得ab,故正确;在中,若a,则由面面平行的判定定理得,故正确故答案为:11设等比数列an的公

10、比q,前n项和为Sn若S3,S2,S4成等差数列,则实数q的值为2【考点】88:等比数列的通项公式【分析】S3,S2,S4成等差数列,可得2S2=S3+S4,化为2a3+a4=0,即可得出【解答】解:S3,S2,S4成等差数列,2S2=S3+S4,2a3+a4=0,可得q=2故答案为:212已知关于x的不等式(x1)(x2a)0(aR)的解集为A,集合B=(2,3)若BA,则a的取值范围为(,1【考点】18:集合的包含关系判断及应用【分析】对a分类讨论,利用不等式的解法、集合之间的基本关系即可得出【解答】解:关于x的不等式(x1)(x2a)0(aR)的解集为A,2a1时,A=(,1)(2a,+

11、),BA,2a2,联立,解得2a1时,A=(,2a)(1,+),满足BA,由2a1,解得a综上可得:a的取值范围为(,1故答案为:(,113已知数列an满足a1=1,且an+1an=2n,nN*,若+193n对任意nN*都成立,则实数的取值范围为(,8【考点】8K:数列与不等式的综合【分析】a1=1,且an+1an=2n,nN*,即n2时,anan1=2n1利用an=(anan1)+(an1an2)+(a2a1)+a1可得an. +193n,化为:=f(n). +193n对任意nN*都成立,f(n)min通过作差即可得出最小值【解答】解:a1=1,且an+1an=2n,nN*,即n2时,ana

12、n1=2n1an=(anan1)+(an1an2)+(a2a1)+a1=2n1+2n2+2+1=2n1+193n,化为:=f(n)+193n对任意nN*都成立,f(n)min由f(n)0,可得n,因此n6时,f(n)0;n7时,f(n)0f(n+1)f(n)=0,解得nf(1)f(2)f(3)f(4)f(5)f(6),可得f(n)min=f(5)=8则实数的取值范围为(,8故答案为:(,814若实数x,y满足xy0,且+=1,则x+y的最小值为【考点】7F:基本不等式【分析】实数x,y满足xy0,且+=1,可得x+y=,利用基本不等式的性质即可得出【解答】解:实数x,y满足xy0,且+=1,则

13、x+y=当且仅当y=,x=时取等号故答案为:二、解答题(共6小题,满分90分)15已知sin=,(,)(1)求sin()的值;(2)求tan2的值【考点】GI:三角函数的化简求值【分析】(1)根据同角三角函数关系式以及和与差的公式计算即可(2)根据同角三角函数关系式以及二倍角公式计算【解答】解:sin=,(,)cos=可得:tan=(1)sin()=sincoscossin=(2)tan2=16如图,直三棱柱ABCA1B1C1中,CA=CB,M,N,P分别为AB,A1C1,BC的中点求证:(1)C1P平面MNC; (2)平面MNC平面ABB1A1【考点】LY:平面与平面垂直的判定;LS:直线与

14、平面平行的判定【分析】(1)连接MP,只需证明四边形MPC1N是平行四边形,即可得MNC1PC1P,即可证得C1P平面MNC;(2)只需证明CM平面MNC,即可得平面MNC平面ABB1A1【解答】证明:(1)连接MP,因为M、P分别为AB,BC的中点MPAC,MP=,又因为在直三棱柱ABCA1B1C1中,ACA1C1,AC=A1C1且N是A1C1的中点,MPC1N,MP=C1N四边形MPC1N是平行四边形,C1PMNC1P面MNC,MN面MNC,C1P平面MNC;(2)在ABC中,CA=CB,M为AB的中点,CMAB在直三棱柱ABCA1B1C1中,B1B面ABCCM面ABC,BB1CM由因为B

15、B1AB=B,BB1,AB平面面ABB1A1又CM平面MNC,平面MNC平面ABB1A117已知三角形的顶点分别为A(1,3),B(3,2),C(1,0)(1)求BC边上高的长度;(2)若直线l过点C,且在l上不存在到A,B两点的距离相等的点,求直线l的方程【考点】IK:待定系数法求直线方程【分析】(1)由条件利用直线的斜率公式,用点斜式求得直线BC的方程,再利用点到直线的距离公式求得BC边上高的长度(2)由题意可得直线l垂直于线段AB,求得直线AB的斜率,用点斜式求得直线l的方程【解答】解:(1)三角形的顶点分别为A(1,3),B(3,2),C(1,0),BC的斜率为=1,故直线BC的方程为

16、y0=1(x1),即 xy1=0,故BC边上高的长度即点A到直线BC的距离,即=(2)直线l过点C,且在l上不存在到A,B两点的距离相等的点,直线l垂直于线段AB,故直线l的斜率为=4,故直线l的方程为y0=4(x1),即4xy4=018如图,在圆内接ABC,A,B,C所对的边分别为a,b,c,满足acosC+ccosA=2bcosB(1)求B的大小;(2)若点D是劣弧上一点,AB=3,BC=2,AD=1,求四边形ABCD的面积【考点】HT:三角形中的几何计算;NC:与圆有关的比例线段【分析】(1)根据正弦定理化简即可(2)在ABC,利用余弦定理求出AC,已知B,可得ADC,再余弦定理求出DC

17、,即可ABC和ADC面积,可得四边形ABCD的面积【解答】解:(1)acosC+ccosA=2bcosB由正弦定理,可得sinAcosC+sinAcosA=2sinBcosB得sinB=2sinBcosB0B,sinB0,cosB=,即B=(2)在ABC中,AB=3,BC=2,B=由余弦定理,cos=,可得:AC=在ADC中,AC=,AD=1,ABCD在圆上,B=ADC=由余弦定理,cos=解得:DC=2四边形ABCD的面积S=SABC+SADC=ADDCsin+ABBCsin=219某商场在一部向下运行的手扶电梯终点的正上方竖直悬挂一幅广告画如图,该电梯的高AB为4米,它所占水平地面的长AC

18、为8米该广告画最高点E到地面的距离为10.5米最低点D到地面的距离6.5米假设某人的眼睛到脚底的距离MN为1.5米,他竖直站在此电梯上观看DE的视角为(1)设此人到直线EC的距离为x米,试用x表示点M到地面的距离;(2)此人到直线EC的距离为多少米,视角最大?【考点】HU:解三角形的实际应用【分析】(1)根据相似三角形得出NH,从而得出MH;(2)计算DG,EG,得出tanDMG和tanEMG,利用差角公式计算tan,得出tan关于x的解析式,利用不等式求出tan取得最大值时对应的x即可【解答】解:(1)由题意可知MG=CH=x,由CHNCAB可得,即,NH=,M到地面的距离MH=MN+NH=(2)DG=CDCG=CDMH=5,同理EG=9,tanDMG=,tanEMG=,tan=tan(EMGDMG)=,0x8,5x+2=60,当且仅当5x=即x=6时取等号,tan=,当x=6时,tan取得最大值,即取得最大值20已知等差数列an和等比数列bn,其中an的公差不为0设Sn是数列an的前n项和若a1,a2,a5是数列bn的前3项,且S4=16(1)求数列an和bn的通项公式;(2)若数列为等差数列,求实数t;(3)构造数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论