2015年上海高考数学真题(文科)试卷(word解析版).doc

2002-2020年上海高考数学真题(理科)试卷(word版)

收藏

资源目录
跳过导航链接。
2002-2020年上海高考数学真题理科试卷word版.zip
2002-2020年上海高考数学真题(理科)试卷(word版)
2020年上海高考数学真题试卷(word解析版).docx---(点击预览)
2019年上海高考数学真题试卷(word解析版).doc---(点击预览)
2018年上海高考数学真题试卷(word解析版).doc---(点击预览)
2017年上海高考数学真题试卷(word解析版).doc---(点击预览)
2016年上海高考数学真题(理科)试卷(word解析版).doc---(点击预览)
2016年上海高考数学真题(文科)试卷(word解析版).doc---(点击预览)
2015年上海高考数学真题(理科)试卷(word解析版).doc---(点击预览)
2015年上海高考数学真题(文科)试卷(word解析版).doc---(点击预览)
2014年上海高考数学真题(理科)试卷(word解析版).doc---(点击预览)
2014年上海高考数学真题(文科)试卷(word解析版).doc---(点击预览)
2013年上海高考数学真题(理科)试卷(word解析版).doc---(点击预览)
2013年上海高考数学真题(文科)试卷(word解析版).doc---(点击预览)
2012年上海高考数学真题(理科)试卷(word解析版).doc---(点击预览)
2012年上海高考数学真题(文科)试卷(word解析版).doc---(点击预览)
2011年上海高考数学真题(理科)试卷(word解析版).doc---(点击预览)
2011年上海高考数学真题(文科)试卷(word解析版).doc---(点击预览)
2010年上海高考数学真题(理科)试卷(word解析版).doc---(点击预览)
2010年上海高考数学真题(文科)试卷(word解析版).doc---(点击预览)
2009年上海高考数学真题(理科)试卷(word解析版).doc---(点击预览)
2009年上海高考数学真题(文科)试卷(word解析版).doc---(点击预览)
2008年上海高考数学真题(理科)试卷(word解析版).doc---(点击预览)
2008年上海高考数学真题(文科)试卷(word解析版).doc---(点击预览)
2007年上海高考数学真题(理科)试卷(word解析版).doc---(点击预览)
2007年上海高考数学真题(文科)试卷(word解析版).doc---(点击预览)
2006年上海高考数学真题(理科)试卷(word解析版).doc---(点击预览)
2006年上海高考数学真题(文科)试卷(word解析版).doc---(点击预览)
2005年上海高考数学真题(理科)试卷(word解析版).doc---(点击预览)
2005年上海高考数学真题(文科)试卷(word版).doc---(点击预览)
2004年上海高考数学真题(理科)试卷(word版).doc---(点击预览)
2004年上海高考数学真题(文科)试卷(word版).doc---(点击预览)
2003年上海高考数学真题(理科)试卷(word版).doc---(点击预览)
2003年上海高考数学真题(文科)试卷(word版).doc---(点击预览)
2002年上海高考数学真题(理科)试卷(word版).doc---(点击预览)
2002年上海高考数学真题(文科)试卷(word版).doc---(点击预览)
2012-2020年春考数学
压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:210729716    类型:共享资源    大小:16.12MB    格式:ZIP    上传时间:2022-05-03 上传人:qq77****057 IP属地:江苏
15
积分
关 键 词:
2002 2020 上海 高考 数学 理科 试卷 word
资源描述:
2002-2020年上海高考数学真题(理科)试卷(word版),2002,2020,上海,高考,数学,理科,试卷,word
内容简介:
绝密启用前 2015年普通高等学校招生全国统一考试(上海卷)数学试卷(文史类)(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分)1.函数的最小正周期为 .2.设全集.若集合,则 .3.若复数满足,其中是虚数单位,则 .4.设为的反函数,则 .5.若线性方程组的增广矩阵为 解为,则 . 6.若正三棱柱的所有棱长均为,且其体积为,则 .7.抛物线上的动点到焦点的距离的最小值为1,则 .8. 方程的解为 .9.若满足,则目标函数的最大值为 .10. 在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示).11.在的二项式中,常数项等于 (结果用数值表示). 12.已知双曲线、的顶点重合,的方程为,若的一条渐近线的斜率是的一条渐近线的斜率的2倍,则的方程为 .13.已知平面向量、满足,且,则的最大值是 .14.已知函数.若存在,满足,且,则的最小值为 .二选择题(本大题共4小题,满分20分)每题有且只有一个正确答案案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.15. 设、,则“、均为实数”是“是实数”的( ). A. 充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件16. 下列不等式中,与不等式解集相同的是( ). A. B. C. D. 17. 已知点 的坐标为,将绕坐标原点逆时针旋转至,则点的纵坐标为( ).A. B. C. D. 18. 设是直线与圆在第一象限的交点,则极限( ).A. B. C. D. 三解答题(本大题共5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分) 如图,圆锥的顶点为,底面的一条直径为,为半圆弧的中点,为劣弧的中点.已知,求三棱锥的体积,并求异面直线与所成角的大小.20. (本题满分14分)本题共2小题,第1小题6分,第2小题8分. 已知函数,其中为实数.(1)根据的不同取值,判断函数的奇偶性,并说明理由;(2)若,判断函数在上的单调性,并说明理由.21.(本小题14分)本题共2小题,第1小题6分,第2小题8分. 如图,三地有直道相通,千米,千米,千米.现甲、乙两警员同时从地出发匀速前往地,经过小时,他们之间的距离为(单位:千米).甲的路线是,速度为5千米/小时,乙的路线是,速度为8千米/小时.乙到达地后原地等待.设时乙到达地;时,乙到达地. (1)求与的值;(2)已知警员的对讲机的有效通话距离是3千米.当时,求的表达式,并判断在上得最大值是否超过3?说明理由.22.(本题满分14分)本题共3个小题,第1小题4分,第2小题6分,第3小题6分. ZXXK 已知椭圆,过原点的两条直线和分别于椭圆交于、和、,设的面积为. (1)设,用、的坐标表示点到直线的距离,并证明; (2)设,求的值;(3)设与的斜率之积为,求的值,使得无论与如何变动,面积保持不变.23.(本题满分16分)本题共3小题.第1小题4分,第2小题6分,第3小题6分. 已知数列与满足,. (1)若,且,求数列的通项公式; (2)设的第项是最大项,即,求证:数列的第项是最大项;(3)设,求的取值范围,使得对任意,且 .2015年上海市文科试题一填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分)1.函数的最小正周期为 .【答案】【解析】因为,所以,所以函数的最小正周期为.【考点定位】函数的周期,二倍角的余弦公式.2.设全集.若集合,则 .【答案】【考点定位】集合的运算.3.若复数满足,其中是虚数单位,则 . 【答案】【考点定位】复数的概念,复数的运算.4.设为的反函数,则 .【答案】【解析】因为为的反函数,解得,所以.【考点定位】反函数,函数的值.5.若线性方程组的增广矩阵为 解为,则 .【答案】16【解析】由题意,是方程组的解,所以,所以.【考点定位】增广矩阵,线性方程组的解法.6.若正三棱柱的所有棱长均为,且其体积为,则 .【答案】4【解析】依题意,解得.【考点定位】等边三角形的性质,正三棱柱的性质.7.抛物线上的动点到焦点的距离的最小值为1,则 .【答案】2【解析】依题意,点为坐标原点,所以,即.【考点定位】抛物线的性质,最值.8. 方程的解为 .【答案】2【考点定位】对数方程.9.若满足,则目标函数的最大值为 .【答案】3【考点定位】不等式组表示的平面区域,简单的线性规划.10. 在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示).【答案】120【考点定位】组合,分类计数原理.11.在的二项式中,常数项等于 (结果用数值表示).【答案】240【解析】由,令,所以,所以常数项为.【考点定位】二项式定理. 12.已知双曲线、的顶点重合,的方程为,若的一条渐近线的斜率是的一条渐近线的斜率的2倍,则的方程为 .【答案】【考点定位】双曲线的性质,直线的斜率.13.已知平面向量、满足,且,则的最大值是 .【答案】【考点定位】平向量的模,向量垂直.14.已知函数.若存在,满足,且,则的最小值为 .【答案】8【解析】因为函数对任意,欲使取得最小值,尽可能多的让取得最高点,考虑,按下图取值满足条件,所以的最小值为8.【考点定位】正弦函数的性质,最值.二选择题(本大题共4小题,满分20分)每题有且只有一个正确答案案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.15. 设、,则“、均为实数”是“是实数”的( ). A. 充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件【答案】A【考点定位】复数的概念,充分条件、必要条件的判定.16. 下列不等式中,与不等式解集相同的是( ). A. B. C. D. 【答案】B【解析】因为,可能是正数、负数或零,所以由可得,所以不等式解集相同的是,选B.【考点定位】同解不等式的判断.17. 已知点 的坐标为,将绕坐标原点逆时针旋转至,则点的纵坐标为( ).A. B. C. D. 【答案】D【考点定位】三角函数的定义,和角的正切公式,两点间距离公式.18. 设是直线与圆在第一象限的交点,则极限( ).A. B. C. D. 【答案】A【解析】因为是直线与圆在第一象限的交点,而是经过点与的直线的斜率,由于点在圆上. 网ZXXK因为,所以.【考点定位】圆的切线,极限.三解答题(本大题共5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)如图,圆锥的顶点为,底面的一条直径为,为半圆弧的中点,为劣弧的中点.已知,求三棱锥的体积,并求异面直线与所成角的大小.【答案】【考点定位】圆锥的性质,异面直线的夹角.21. (本题满分14分)本题共2小题,第1小题6分,第2小题8分. 已知函数,其中为实数.(1)根据的不同取值,判断函数的奇偶性,并说明理由;(2)若,判断函数在上的单调性,并说明理由.【答案】(1)是非奇非偶函数;(2)函数在上单调递增.【考点定位】函数的奇偶性、单调性.21.(本小题14分)本题共2小题,第1小题6分,第2小题8分. 如图,三地有直道相通,千米,千米,千米.现甲、乙两警员同时从地出发匀速前往地,经过小时,他们之间的距离为(单位:千米).甲的路线是,速度为5千米/小时,乙的路线是,速度为8千米/小时.乙到达地后原地等待.设时乙到达地;时,乙到达地. (1)求与的值;(2)已知警员的对讲机的有效通话距离是3千米.当时,求的表达式,并判断在上得最大值是否超过3?说明理由.【答案】(1),千米;(2)不超过了3千米.【解析】(1)根据条件知,设此时甲到达A点,并连接,如图所示,则,所以在中,由余弦定理得(千米).(2)可求得,设小时后,且,甲到达了B点,乙到达了C点,如图所示,所以,所以在中,由余弦定理,所以,设,因为函数的对称轴为,且,所以得最大值为,此时的最大值为,所以在上得最大值不超过3.【考点定位】余弦定理的实际运用,函数的值域.22.(本题满分14分)本题共3个小题,第1小题4分,第2小题6分,第3小题6分. 已知椭圆,过原点的两条直线和分别于椭圆交于、和、,设的面积为. (1)设,用、的坐标表示点到直线的距离,并证明; (2)设,求的值;(3)设与的斜率之积为,求的值,使得无论与如何变动,面积保持不变.【答案】(1)详见解析;(2)或;(3).(3)设,则,设,由,的,同理,由(1)知, ,整理得,由题意知与无关,则,解得.所以.【考点定位】椭圆的性质,直线与椭圆的位置关系.23.(本题满分16分)本题共3小题.第1小题4分,第2小题6分,第3小题6分.
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:2002-2020年上海高考数学真题(理科)试卷(word版)
链接地址:https://www.renrendoc.com/paper/210729716.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!