初中几何十大模型无水印_第1页
初中几何十大模型无水印_第2页
初中几何十大模型无水印_第3页
初中几何十大模型无水印_第4页
初中几何十大模型无水印_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 初中几何十大模型模型,可理解为数学定理(培训辅导机构总结归纳出来的定理)。但是不是课本上出现的定理,故不能在证明题中直接使用其结论(需要证明一遍)。模型主要作用还是简化图形,为证明或者添加辅助线提供思路。一、中位线模型例】在中,为斜边的中点,且满足乙,=求线段如图,在五边形ABCDE中,ZABC=ZAED=的中点求证:BF=EF-分别在边、上,长度ABAC=ZEAD,F为CD二、角平分线模型三、三垂直模型与弦图【例】在平面直角坐标系中,(),点的纵坐标为2点的纵坐标为0当、三点围成的等腰直角三角形时,求、坐标。 四、手拉手模型条件:、两个等腰三角形、顶角相等、顶点重合结论:、手相等、三角形全

2、等、手的夹角相等、顶点连手的交点得平分【例】在直线的同一侧作两个等边三角形和厶,连与D证明:(12)AE=DC(3与的夹角为(4(5(6平分乙(7C五、倍长中线与婆罗摩笈多模型倍长中线、倍长类中线、中点遇平行延长相交 【例】如图,向aabc的外侧作正方形abdeACFGAD为AABC中线求证:AD丄EG-六、弦图与婆罗摩笈多模型【例】如图,向AABC的外侧作正方形ABDE、ACFG过A作AH丄BC于H,AH与EG交于P求证:Ep=pg,BC=2AP-七、将军饮马模型 1若.三角形3个内角均小于12,0那么3条距离连线正好三等分费马点所在的周角,即该点所对三角形三边的张角相等,均为12。0所以三

3、角形的费马点也称为三角形的等角中心。2若.三角形有一内角大于等于12,0则此钝角的顶点就是距离和最小的点。垂足三角形锐角三角形三条高的垂足形成的三角形。锐角三角形的所有内接三角形中,垂足三角形的周长最短分别是【例】在、中,乙。,乙,上的点,求的周长最小值 # #八、半角模型AC【模型1】【条件】加闿:囚边ff;ABCD,人ZBAD-_BCD=Z.ABCZ.ADC=180=,Z.EAF=/BAD,点E在直线BC点F在直线CD上2【跖论】BE-.WEF满足截长补短关系 【校型2】【条件】在正方ABCD-K已血E、F分别是边B(3二的点,卫满足ZEAF=45,AEAF分别与对角线交干点财、N【结论】

4、毗-DCEF;血时仏讪尸豆俯;川归仙:Ccf-2AB-.EI+D/vImV2;AytVAADNWEE赋DAEFsA!3NA-ADAM:(HAO:AIi=A(),AS=;血可得到皿祁?和丛肘肉相似比为1:d);5AAjWA=S四辽耳mvff;(8)AADF,AAONAA2?/T;ME科为等腰直黄三角形,厶EN=45。;MM为等腰直角三角形,ZAFM=45.(1.ZEVM5:1AE-A.=l:J?;丙J-E.那四点共圆Af.科、F、C、庄左点共圆.DBEC # 例】仕止万形中,乙/,求证:与平行或共线;阴影部分面积相等九、边边角模型如图,A得BC辅助线思路:作垂线平行线【例】已知矩形ACD的一条边

5、AD,将矩形ACD折叠,使得顶点落在求证:OCP-PDA;若OCP与APDA的面积比为:,求边A的长;(2若图中的点P恰好是CD边的中点,求ZOA的度数;()如图,在的条件下,擦去折痕AO、线段OP,连结P.动点在线段AP(点与点P、A不重合),动点在线段A的延长线上,且P,连结交P于点,作丄吁点试问当点、在移动过程中,线段的长度是否发生变化?若变化,说明理由;若不变,求出线段的长度.十、截长补短模型截长补短法,是初中数学几何题中一种辅助线的添加方法,也是把几何题化难为易的一种思想。常用于证明不在同条直线的几条线段的数量关系,形如。截长就是在一条线上截取成两段,补短就是在一条边上延长,使其等于条所求边。截长常用的方法:1过.某点作长边的垂线在长边上截取一条与某一短边相同的线段,再证剩下的线段与另短边相等。补短常用的方法:1延.长短边通过旋转等方式使两

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论