版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
2、要求的。1已知集合,则( )ABCD2已知,则“直线与直线垂直”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件3中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,指数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在第三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有( )A12种B24种C36种D48种4已知六棱锥各顶点都在同一个球(记为球)的球面上,且底面为正六边形,
3、顶点在底面上的射影是正六边形的中心,若,则球的表面积为( )ABCD5设函数在定义城内可导,的图象如图所示,则导函数的图象可能为( )ABCD6已知表示两条不同的直线,表示两个不同的平面,且则“”是“”的( )条件.A充分不必要B必要不充分C充要D既不充分也不必要7聊斋志异中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,则按照以上规律,若具有“穿墙术”,则( )A48B63C99D1208总体由编号为01,02,.,39,40的40个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表(如表)第1行
4、的第4列和第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A23B21C35D329计算等于( )ABCD10在中,为上异于,的任一点,为的中点,若,则等于( )ABCD11记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为( )A2阶区间B3阶区间C4阶区间D5阶区间12下图是我国第2430届奥运奖牌数的回眸和中国代表团奖牌总数统计图,根据表和统计图,以下描述正确的是( )金牌(块)银牌(块)铜牌(块)奖牌总数24511122825162212542616221250272816155928321714632951212810030382723
5、88A中国代表团的奥运奖牌总数一直保持上升趋势B折线统计图中的六条线段只是为了便于观察图象所反映的变化,不具有实际意义C第30届与第29届北京奥运会相比,奥运金牌数、银牌数、铜牌数都有所下降D统计图中前六届奥运会中国代表团的奥运奖牌总数的中位数是54.5二、填空题:本题共4小题,每小题5分,共20分。13若的展开式中所有项的系数之和为,则_,含项的系数是_(用数字作答).14 “今有女善织,日益功疾,初日织五尺,今一月共织九匹三丈”其白话意译为:“现有一善织布的女子,从第2天开始,每天比前一天多织相同数量的布,第一天织了5尺布,现在一个月(按30天计算)共织布390尺”则每天增加的数量为_尺,
6、设该女子一个月中第n天所织布的尺数为,则_15执行如图所示的伪代码,若输出的y的值为13,则输入的x的值是_.16已知全集,集合,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)每年3月20日是国际幸福日,某电视台随机调查某一社区人们的幸福度现从该社区群中随机抽取18名,用“10分制”记录了他们的幸福度指数,结果见如图所示茎叶图,其中以小数点前的一位数字为茎,小数点后的一位数字为叶若幸福度不低于8.5分,则称该人的幸福度为“很幸福”()求从这18人中随机选取3人,至少有1人是“很幸福”的概率;()以这18人的样本数据来估计整个社区的总体数据,若从该社区(人数很
7、多)任选3人,记表示抽到“很幸福”的人数,求的分布列及18(12分)如图,三棱台的底面是正三角形,平面平面,.(1)求证:;(2)若,求直线与平面所成角的正弦值.19(12分)设数列是等比数列,已知, (1)求数列的首项和公比;(2)求数列的通项公式20(12分)已知与有两个不同的交点,其横坐标分别为().(1)求实数的取值范围;(2)求证:.21(12分)某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下:等级不
8、合格合格得分频数624(1)由该题中频率分布直方图求测试成绩的平均数和中位数;(2)其他条件不变,在评定等级为“合格”的学生中依次抽取2人进行座谈,每次抽取1人,求在第1次抽取的测试得分低于80分的前提下,第2次抽取的测试得分仍低于80分的概率;(3)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈现再从这10人中任选4人,记所选4人的量化总分为,求的数学期望22(10分)已知函数,(1)讨论的单调性;(2)若在定义域内有且仅有一个零点,且此时恒成立,求实数m的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符
9、合题目要求的。1C【解析】求出集合,计算出和,即可得出结论.【详解】,.故选:C.【点睛】本题考查交集和并集的计算,考查计算能力,属于基础题.2B【解析】由两直线垂直求得则或,再根据充要条件的判定方法,即可求解.【详解】由题意,“直线与直线垂直”则,解得或,所以“直线与直线垂直”是“”的必要不充分条件,故选B.【点睛】本题主要考查了两直线的位置关系,及必要不充分条件的判定,其中解答中利用两直线的位置关系求得的值,同时熟记充要条件的判定方法是解答的关键,着重考查了推理与论证能力,属于基础题.3C【解析】根据“数”排在第三节,则“射”和“御”两门课程相邻有3类排法,再考虑两者的顺序,有种,剩余的3
10、门全排列,即可求解.【详解】由题意,“数”排在第三节,则“射”和“御”两门课程相邻时,可排在第1节和第2节或第4节和第5节或第5节和第6节,有3种,再考虑两者的顺序,有种,剩余的3门全排列,安排在剩下的3个位置,有种,所以“六艺”课程讲座不同的排课顺序共有种不同的排法.故选:C.【点睛】本题主要考查了排列、组合的应用,其中解答中认真审题,根据题设条件,先排列有限制条件的元素是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4D【解析】由题意,得出六棱锥为正六棱锥,求得,再结合球的性质,求得球的半径,利用表面积公式,即可求解.【详解】由题意,六棱锥底面为正六边形,顶点在底面上的射影是
11、正六边形的中心,可得此六棱锥为正六棱锥,又由,所以, 在直角中,因为,所以,设外接球的半径为,在中,可得,即,解得,所以外接球的表面积为.故选:D.【点睛】本题主要考查了正棱锥的几何结构特征,以及外接球的表面积的计算,其中解答中熟记几何体的结构特征,熟练应用球的性质求得球的半径是解答的关键,着重考查了空间想象能力,以及推理与计算能力,属于中档试题.5D【解析】根据的图象可得的单调性,从而得到在相应范围上的符号和极值点,据此可判断的图象.【详解】由的图象可知,在上为增函数,且在上存在正数,使得在上为增函数,在为减函数,故在有两个不同的零点,且在这两个零点的附近,有变化,故排除A,B.由在上为增函
12、数可得在上恒成立,故排除C.故选:D.【点睛】本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题.6B【解析】根据充分必要条件的概念进行判断.【详解】对于充分性:若,则可以平行,相交,异面,故充分性不成立;若,则可得,必要性成立.故选:B【点睛】本题主要考查空间中线线,线面,面面的位置关系,以及充要条件的判断,考查学生综合运用知识的能力.解决充要条件判断问题,关键是要弄清楚谁是条件,谁是结论.7C【解析】观察规律得根号内分母为分子的平方减1,从而求出n.【详解】解:观察各式发现规律,根号内分母为分子的平方减1所以故选:C.【点睛】本题考查了归纳推
13、理,发现总结各式规律是关键,属于基础题.8B【解析】根据随机数表法的抽样方法,确定选出来的第5个个体的编号.【详解】随机数表第1行的第4列和第5列数字为4和6,所以从这两个数字开始,由左向右依次选取两个数字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,其中落在编号01,02,39,40内的有:16,26,16,24,23,21,依次不重复的第5个编号为21.故选:B【点睛】本小题主要考查随机数表法进行抽样,属于基础题.9A【解析】利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值.【详解】原式.故选:A【点
14、睛】本小题主要考查诱导公式,考查对数运算,属于基础题.10A【解析】根据题意,用表示出与,求出的值即可.【详解】解:根据题意,设,则,又,故选:A.【点睛】本题主要考查了平面向量基本定理的应用,关键是要找到一组合适的基底表示向量,是基础题.11D【解析】可判断函数为奇函数,先讨论当且时的导数情况,再画出函数大致图形,将所求区间端点值分别看作对应常函数,再由图形确定具体自变量范围即可求解【详解】当且时,.令得.可得和的变化情况如下表:令,则原不等式变为,由图像知的解集为,再次由图像得到的解集由5段分离的部分组成,所以解集为5阶区间. 故选:D【点睛】本题考查由函数的奇偶性,单调性求解对应自变量范
15、围,导数法研究函数增减性,数形结合思想,转化与化归思想,属于难题12B【解析】根据表格和折线统计图逐一判断即可.【详解】A.中国代表团的奥运奖牌总数不是一直保持上升趋势,29届最多,错误;B.折线统计图中的六条线段只是为了便于观察图象所反映的变化,不表示某种意思,正确;C.30届与第29届北京奥运会相比,奥运金牌数、铜牌数有所下降,银牌数有所上升,错误;D. 统计图中前六届奥运会中国代表团的奥运奖牌总数按照顺序排列的中位数为,不正确;故选:B【点睛】此题考查统计图,关键点读懂折线图,属于简单题目.二、填空题:本题共4小题,每小题5分,共20分。13 【解析】的展开式中所有项的系数之和为,项的系
16、数是 ,故答案为(1),(2).14 52 【解析】设从第2天开始,每天比前一天多织尺布,由等差数列前项和公式求出,由此利用等差数列通项公式能求出.【详解】设从第2天开始,每天比前一天多织d尺布,则,解得,即每天增加的数量为,故答案为,52.【点睛】本题主要考查等差数列的通项公式、等差数列的求和公式,意在考查利用所学知识解决问题的能力,属于中档题.158【解析】根据伪代码逆向运算求得结果.【详解】输入,若,则,不合题意若,则,满足题意本题正确结果:【点睛】本题考查算法中的语言,属于基础题.16【解析】根据题意可得出,然后进行补集的运算即可【详解】根据题意知,故答案为:【点睛】本题考查列举法的定
17、义、全集的定义、补集的运算,考查计算能力,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (). ()见解析.【解析】()人中很幸福的有人,可以先计算其逆事件,即人都认为不很幸福的概率,再用减去人都认为不很幸福的概率即可;()根据题意,随机变量,列出分布列,根据公式求出期望即可【详解】()设事件抽出的人至少有人是“很幸福”的,则表示人都认为不很幸福()根据题意,随机变量,的可能的取值为;所以随机变量的分布列为:所以的期望【点睛】本题考查了离散型随机变量的概率分布列,数学期望的求解,概率分布中的二项分布问题,属于常规题型18()见证明;()【解析】()取的中点为,连
18、结,易证四边形为平行四边形,即,由于,为的中点,可得到,从而得到,即可证明平面,从而得到;()易证,两两垂直,以,分别为,轴,建立如图所示的空间直角坐标系,求出平面的一个法向量为,设与平面所成角为,则,即可得到答案【详解】解:()取的中点为,连结.由是三棱台得,平面平面,从而.,四边形为平行四边形,.,为的中点,.平面平面,且交线为,平面,平面,而平面,.()连结.由是正三角形,且为中点,则.由()知,平面,两两垂直.以,分别为,轴,建立如图所示的空间直角坐标系.设,则,.设平面的一个法向量为.由可得,.令,则,.设与平面所成角为,则.【点睛】本题考查了空间几何中,面面垂直的性质,线线垂直的证
19、明,及线面角的求法,考查了学生的逻辑推理能力与计算求解能力,属于中档题19 (1)(2)【解析】本题主要考查了等比数列的通项公式的求解,数列求和的错位相减求和是数列求和中的重点与难点,要注意掌握(1)设等比数列an的公比为q,则q+q2=6,解方程可求q(2)由(1)可求an=a1qn-1=2n-1,结合数列的特点,考虑利用错位相减可求数列的和解:(1)(2), 两式相减:20(1);(2)见解析【解析】(1)利用导数研究的单调性,分析函数性质,数形结合,即得解;(2)构造函数,可证得:,分析直线,与从左到右交点的横坐标,在,处的切线即得解.【详解】(1)设函数,令,令故在单调递减,在单调递增,时;时.(2)过点,的直线为,则令,.过点,的直线为,则,在上单调递增.设直线,与从左到右交点的横坐标依次为,由图知.在,处的切线分别为,同理可以证得,.记直线与两切线和从左到右交点的横坐标依次为,.【点睛】本题考查了函数与导数综合,考查了学生数形结合,综合分析,转化划归,逻辑推理,数学运算的能力,属于较难题.21(1)64,65;(2);(3).【解析】(1)根据频率分布直方图及其性质可求出,平均数,中位数;(2)设“第1次抽取的测试得分低于80分”为事件,“第2次抽取的测试得分低于80分”为事件,由条件概率公式可求出;(3)从评定等级为“合格”和“
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深度解析(2026)《GBT 33558-2017地面数字电视网络接口模块(NIM)技术要求和测量方法》(2026年)深度解析
- 深度解析(2026)《GBT 33503-2017含铅玻璃化学成分分析方法》(2026年)深度解析
- Starter Unit 3 Section B(1a1e)读写课 七年级英语上册(人教版2024)
- 医疗数据安全治理:区块链技术的合规应用
- 2我是什么【从基到通】二年级上册语文统编版
- 医疗数据安全攻防的区块链技术框架
- 医疗数据安全成熟度:区块链标准体系
- 医疗数据安全应急响应机制中的多方利益协调研究
- 医疗数据安全备份的零信任策略
- 胖乎乎小手课件
- DB64∕680-2025 建筑工程安全管理规程
- 海洋能经济性分析-洞察及研究
- 2025年江苏省无锡市梁溪区中考二模语文试题含答案解析
- 电厂高压配电室管理制度
- 四年级上册数学脱式计算大全500题及答案
- 分位数因子增广混频分位数回归模型构建及应用研究
- T-HAAI 003-2024 数据资产 数据质量评价规范
- DB31∕T 310001-2020 船舶水污染物内河接收设施配置规范
- GB/T 44968-2024粮食储藏小麦粉安全储藏技术规范
- UL347a标准中文版-2019中压电力转换设备UL标准中文版
- 城市轨道交通列车自动控制系统维护 课件 3.1 ZC系统认知
评论
0/150
提交评论