北京市东城区第五十2022年高三3月份模拟考试数学试题含解析_第1页
北京市东城区第五十2022年高三3月份模拟考试数学试题含解析_第2页
北京市东城区第五十2022年高三3月份模拟考试数学试题含解析_第3页
北京市东城区第五十2022年高三3月份模拟考试数学试题含解析_第4页
北京市东城区第五十2022年高三3月份模拟考试数学试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设函数,则使得成立的的取值范围是( )ABCD22019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行.这次阅兵不仅展示了我国的科技军事力量,更是让世界感

2、受到了中国的日新月异.今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵.他们是由军事科学院、国防大学、国防科技大学联合组建若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学位.现知道:甲不是军事科学院的;来自军事科学院的不是博士;乙不是军事科学院的;乙不是博士学位;国防科技大学的是研究生则丙是来自哪个院校的,学位是什么( )A国防大学,研究生B国防大学,博士C军事科学院,学士D国防科技大学,研究生3已知函数(),若函数在上有唯一零点,则的值为( )A1B或0C1或0D2或04在平面直角坐标系中,锐角顶点在坐标原点,始边为x轴正半轴,终边与单位圆交于点,则( )ABCD5设是定义

3、域为的偶函数,且在单调递增,则( )ABCD6已知向量,且,则m=( )A8B6C6D87已知,若,则等于( )A3B4C5D68若直线l不平行于平面,且l,则( )A内所有直线与l异面B内只存在有限条直线与l共面C内存在唯一的直线与l平行D内存在无数条直线与l相交9已知正方体的体积为,点,分别在棱,上,满足最小,则四面体的体积为 ABCD10已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则( )A1194B1695C311D109511已知双曲线的一条渐近线与直线垂直,则双曲线的离心率等于( )ABCD12在正项等比数列an中,a5-a1=15,a4-a2 =6,则a3=( )A

4、2B4CD8二、填空题:本题共4小题,每小题5分,共20分。13若的展开式中只有第六项的二项式系数最大,则展开式中各项的系数和是_14在的二项展开式中,所有项的二项式系数之和为256,则_,项的系数等于_.15已知函数f(x)若关于x的方程f(x)kx有两个不同的实根,则实数k的取值范围是_16若函数为奇函数,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)2018年反映社会现实的电影我不是药神引起了很大的轰动,治疗特种病的创新药研发成了当务之急为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下:研发费用

5、(百万元)2361013151821销量(万盒)1122.53.53.54.56(1)求与的相关系数精确到0.01,并判断与的关系是否可用线性回归方程模型拟合?(规定:时,可用线性回归方程模型拟合);(2)该药企准备生产药品的三类不同的剂型,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测第一次检测时,三类剂型,合格的概率分别为,第二次检测时,三类剂型,合格的概率分别为,两次检测过程相互独立,设经过两次检测后,三类剂型合格的种类数为,求的数学期望附:(1)相关系数(2),18(12分)购买一辆某品牌新能源汽车,在行驶三年后,政府将给予适当金额的购车补贴.某调研机构对拟购买该品牌汽车的

6、消费者,就购车补贴金额的心理预期值进行了抽样调查,其样本频率分布直方图如图所示.(1)估计拟购买该品牌汽车的消费群体对购车补贴金额的心理预期值的方差(同一组中的数据用该组区间的中点值作代表);(2)将频率视为概率,从拟购买该品牌汽车的消费群体中随机抽取人,记对购车补贴金额的心理预期值高于万元的人数为,求的分布列和数学期望;(3)统计最近个月该品牌汽车的市场销售量,得其频数分布表如下:月份销售量(万辆)试预计该品牌汽车在年月份的销售量约为多少万辆?附:对于一组样本数据,其回归直线的斜率和截距的最小二乘估计分别为,.19(12分)己知函数.(1)当时,求证:;(2)若函数,求证:函数存在极小值.2

7、0(12分)已知圆M:及定点,点A是圆M上的动点,点B在上,点G在上,且满足,点G的轨迹为曲线C.(1)求曲线C的方程;(2)设斜率为k的动直线l与曲线C有且只有一个公共点,与直线和分别交于P、Q两点.当时,求(O为坐标原点)面积的取值范围.21(12分)在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程与曲线的直角坐标方程;(2)设为曲线上位于第一,二象限的两个动点,且,射线交曲线分别于,求面积的最小值,并求此时四边形的面积.22(10分)如图在棱锥中,为矩形,面,(1)在上是否存在一点,使面,若存在确定点位置

8、,若不存在,请说明理由;(2)当为中点时,求二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】由奇偶性定义可判断出为偶函数,由单调性的性质可知在上单调递增,由此知在上单调递减,从而将所求不等式化为,解绝对值不等式求得结果.【详解】由题意知:定义域为,为偶函数,当时,在上单调递增,在上单调递减,在上单调递增,则在上单调递减,由得:,解得:或,的取值范围为.故选:.【点睛】本题考查利用函数的单调性和奇偶性求解函数不等式的问题;奇偶性的作用是能够确定对称区间的单调性,单调性的作用是能够将函数值的大小关系转化为自变

9、量的大小关系,进而化简不等式.2C【解析】根据可判断丙的院校;由和可判断丙的学位.【详解】由题意甲不是军事科学院的,乙不是军事科学院的;则丙来自军事科学院;由来自军事科学院的不是博士,则丙不是博士;由国防科技大学的是研究生,可知丙不是研究生,故丙为学士.综上可知,丙来自军事科学院,学位是学士.故选:C.【点睛】本题考查了合情推理的简单应用,由条件的相互牵制判断符合要求的情况,属于基础题.3C【解析】求出函数的导函数,当时,只需,即,令,利用导数求其单调区间,即可求出参数的值,当时,根据函数的单调性及零点存在性定理可判断;【详解】解:(),当时,由得,则在上单调递减,在上单调递增,所以是极小值,

10、只需,即.令,则,函数在上单调递增.,;当时,函数在上单调递减,函数在上有且只有一个零点,的值是1或0.故选:C【点睛】本题考查利用导数研究函数的零点问题,零点存在性定理的应用,属于中档题.4A【解析】根据单位圆以及角度范围,可得,然后根据三角函数定义,可得,最后根据两角和的正弦公式,二倍角公式,简单计算,可得结果.【详解】由题可知:,又为锐角所以,根据三角函数的定义:所以由所以故选:A【点睛】本题考查三角函数的定义以及两角和正弦公式,还考查二倍角的正弦、余弦公式,难点在于公式的计算,识记公式,简单计算,属基础题.5C【解析】根据偶函数的性质,比较即可.【详解】解:显然,所以是定义域为的偶函数

11、,且在单调递增,所以故选:C【点睛】本题考查对数的运算及偶函数的性质,是基础题.6D【解析】由已知向量的坐标求出的坐标,再由向量垂直的坐标运算得答案【详解】,又,34+(2)(m2)0,解得m1故选D【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题7C【解析】先求出,再由,利用向量数量积等于0,从而求得.【详解】由题可知,因为,所以有,得,故选:C.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.8D【解析】通过条件判断直线l与平面相交,于是可以判断ABCD的正误.【详解】根据直线l不平行于平面,且l可知直线l

12、与平面相交,于是ABC错误,故选D.【点睛】本题主要考查直线与平面的位置关系,直线与直线的位置关系,难度不大.9D【解析】由题意画出图形,将所在的面延它们的交线展开到与所在的面共面,可得当时最小,设正方体的棱长为,得,进一步求出四面体的体积即可【详解】解:如图,点M,N分别在棱上,要最小,将所在的面延它们的交线展开到与所在的面共面,三线共线时,最小, 设正方体的棱长为,则,取,连接,则共面,在中,设到的距离为,设到平面的距离为,.故选D【点睛】本题考查多面体体积的求法,考查了多面体表面上的最短距离问题,考查计算能力,是中档题10D【解析】确定中前35项里两个数列中的项数,数列中第35项为70,

13、这时可通过比较确定中有多少项可以插入这35项里面即可得,然后可求和【详解】时,所以数列的前35项和中,有三项3,9,27,有32项,所以故选:D【点睛】本题考查数列分组求和,掌握等差数列和等比数列前项和公式是解题基础解题关键是确定数列的前35项中有多少项是中的,又有多少项是中的11B【解析】由于直线的斜率k,所以一条渐近线的斜率为,即,所以,选B.12B【解析】根据题意得到,解得答案.【详解】,解得或(舍去).故.故选:.【点睛】本题考查了等比数列的计算,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由题意得出展开式中共有11项,;再令求得展开式中各项的系

14、数和【详解】由的展开式中只有第六项的二项式系数最大,所以展开式中共有11项,所以;令,可求得展开式中各项的系数和是:故答案为:1【点睛】本小题主要考查二项式展开式的通项公式的运用,考查二项式展开式各项系数和的求法,属于基础题.148 1 【解析】根据二项式系数和的性质可得n,再利用展开式的通项公式求含项的系数即可.【详解】由于所有项的二项式系数之和为,故的二项展开式的通项公式为,令,求得,可得含x项的系数等于,故答案为:8;1【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于中档题15【解析】由图可知,当直线ykx在直线OA与x轴(不含它们)之间时,ykx与y

15、f(x)的图像有两个不同交点,即方程有两个不相同的实根16-2【解析】由是定义在上的奇函数,可知对任意的,都成立,代入函数式可求得的值.【详解】由题意,的定义域为,是奇函数,则,即对任意的,都成立,故,整理得,解得.故答案为:.【点睛】本题考查奇函数性质的应用,考查学生的计算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)0.98;可用线性回归模型拟合(2)【解析】(1)根据题目提供的数据求出,代入相关系数公式求出,根据的大小来确定结果;(2)求出药品的每类剂型经过两次检测后合格的概率,发现它们相同,那么经过两次检测后,三类剂型合格的种类数为,服从

16、二项分布,利用二项分布的期望公式求解即可.【详解】解:(1)由题意可知,由公式,与的关系可用线性回归模型拟合;(2)药品的每类剂型经过两次检测后合格的概率分别为,由题意, ,.【点睛】本题考查相关系数的求解,考查二项分布的期望,是中档题.18(1)1.7;(2),见解析;(2)2.【解析】(1)平均数的估计值为每个小矩形组中值乘以小矩形面积的和;(2)易得,由二项分布列的期望公式计算;(3)利用所给公式计算出回归直线即可解决.【详解】(1)由频率分布直方图可知,消费群体对购车补贴金额的心理预期值的平均数的估计值为,所以方差的估计值为;(2)由频率分布直方图可知,消费群体对购车补贴金额的心理预期

17、值高于3万元的频率为,则,所以的分布列为,数学期望;(3)将 2018年11月至2019年3月的月份数依次编号为 1,2,3,4,5,记 ,由 散 点 图可知,5组样本数据呈线性相关关系,因为,则,所以回归直线方程为,当时,预计该品牌汽车在年月份的销售量约为2万辆.【点睛】本题考查平均数、方差的估计值、二项分布列及其期望、线性回归直线方程及其应用,是一个概率与统计的综合题,本题是一道中档题.19(1)证明见解析(2)证明见解析【解析】(1)求导得,由,且,得到,再利用函数在上单调递减论证.(2)根据题意,求导,令,易知; ,易知当时,;当时,函数单调递增,而,又,由零点存在定理得,使得,使得,

18、有从而得证.【详解】(1)依题意,因为,且,故,故函数在上单调递减,故.(2)依题意,令,则;而,可知当时,故函数在上单调递增,故当时,;当时,函数单调递增,而,又,故,使得,故,使得,即函数单调递增,即单调递增;故当时,故函数在上单调递减,在上单调递增,故当时,函数有极小值.【点睛】本题考查利用导数研究函数的性质,还考查推理论证能力以及函数与方程思想,属于难题.20(1);(2).【解析】(1)根据题意得到GB是线段的中垂线,从而为定值,根据椭圆定义可知点G的轨迹是以M,N为焦点的椭圆,即可求出曲线C的方程;(2)联立直线方程和椭圆方程,表示处的面积代入韦达定理化简即可求范围.【详解】(1)为的中点,且是线段的中垂线,又,点G的轨迹是以M,N为焦点的椭圆,设椭圆方程为(),则,所以曲线C的方程为.(2)设直线l:(),由消去y,可得.因为直线l总与椭圆C有且只有一个公共点,所以,.又由可得;同理可得.由原点O到直线的距离为和,可得.将代入得,当时,综上,面积的取值范围是.【点睛】此题考查了轨迹和直线与曲线相交问题,轨迹通过已知条件找到几何关系从而判断轨迹,直线与曲线相交一般联立设而不求韦达定理进行求解即可,属于一般性题目.21(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论