




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1执行程序框图,则输出的数值为( )ABCD2已知函数,则( )AB1C-1D03已知函数是定义在上的偶函数,当时,则,,的大小关系为( )ABCD4年初,湖北出现由新型冠状病毒引发的
2、肺炎.为防止病毒蔓延,各级政府相继启动重大突发公共卫生事件一级响应,全国人心抗击疫情.下图表示月日至月日我国新型冠状病毒肺炎单日新增治愈和新增确诊病例数,则下列中表述错误的是( )A月下旬新增确诊人数呈波动下降趋势B随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数C月日至月日新增确诊人数波动最大D我国新型冠状病毒肺炎累计确诊人数在月日左右达到峰值5给出个数 ,其规律是:第个数是,第个数比第个数大 ,第个数比第个数大,第个数比第个数大,以此类推,要计算这个数的和现已给出了该问题算法的程序框图如图,请在图中判断框中的处和执行框中的处填上合适的语句,使之能完成该题算法功能( )A;B;C
3、;D;6设双曲线(a0,b0)的一个焦点为F(c,0)(c0),且离心率等于,若该双曲线的一条渐近线被圆x2+y22cx0截得的弦长为2,则该双曲线的标准方程为( )ABCD7设为非零向量,则“”是“与共线”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件8设,则( )ABCD9要排出高三某班一天中,语文、数学、英语各节,自习课节的功课表,其中上午节,下午节,若要求节语文课必须相邻且节数学课也必须相邻(注意:上午第五节和下午第一节不算相邻),则不同的排法种数是( )ABCD10已知等差数列的前项和为,则( )A25B32C35D4011在棱长为a的正方体中,E、F、
4、M分别是AB、AD、的中点,又P、Q分别在线段、上,且,设平面平面,则下列结论中不成立的是( )A平面BC当时,平面D当m变化时,直线l的位置不变12设集合A=4,5,7,9,B=3,4,7,8,9,全集U=AB,则集合中的元素共有 ( )A3个B4个C5个D6个二、填空题:本题共4小题,每小题5分,共20分。13已知二项式ax-1x6的展开式中的常数项为-160,则a=_14已知为偶函数,当时,则_15已知抛物线的焦点为,过点且斜率为1的直线交抛物线于两点,若线段的垂直平分线与轴交点的横坐标为,则的值为_.16已知的展开式中含有的项的系数是,则展开式中各项系数和为_.三、解答题:共70分。解
5、答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)求函数的单调递增区间;(2)在ABC中,角A,B,C所对的边分别是a,b,c,若满足,求.18(12分)设函数.()讨论函数的单调性;()如果对所有的0,都有,求的最小值;()已知数列中,且,若数列的前n项和为,求证:.19(12分)已知函数(是自然对数的底数,).(1)求函数的图象在处的切线方程;(2)若函数在区间上单调递增,求实数的取值范围;(3)若函数在区间上有两个极值点,且恒成立,求满足条件的的最小值(极值点是指函数取极值时对应的自变量的值).20(12分)在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原
6、点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点曲线的极坐标方程为.(1)求直线的普通方程与曲线的直角坐标方程;(2)过点作直线的垂线交曲线于两点(在轴上方),求的值.21(12分)已知函数,.()判断函数在区间上零点的个数,并证明;()函数在区间上的极值点从小到大分别为,证明:22(10分)已知函数(1)求函数的单调递增区间(2)记函数的图象为曲线,设点是曲线上不同两点,如果在曲线上存在点,使得;曲线在点M处的切线平行于直线AB,则称函数存在“中值和谐切线”,当时,函数是否存在“中值和谐切线”请说明理由参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四
7、个选项中,只有一项是符合题目要求的。1C【解析】由题知:该程序框图是利用循环结构计算并输出变量的值,计算程序框图的运行结果即可得到答案.【详解】,满足条件,满足条件,满足条件,满足条件,不满足条件,输出.故选:C【点睛】本题主要考查程序框图中的循环结构,属于简单题.2A【解析】由函数,求得,进而求得的值,得到答案.【详解】由题意函数,则,所以,故选A.【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的解析式,代入求解是解答的关键,着重考查了推理与运算能力,属于基础题.3C【解析】根据函数的奇偶性得,再比较的大小,根据函数的单调性可得选项.【详解】依题意得,当时,因为,所以在上单
8、调递增,又在上单调递增,所以在上单调递增,即,故选:C.【点睛】本题考查函数的奇偶性的应用、幂、指、对的大小比较,以及根据函数的单调性比较大小,属于中档题.4D【解析】根据新增确诊曲线的走势可判断A选项的正误;根据新增确诊曲线与新增治愈曲线的位置关系可判断B选项的正误;根据月日至月日新增确诊曲线的走势可判断C选项的正误;根据新增确诊人数的变化可判断D选项的正误.综合可得出结论.【详解】对于A选项,由图象可知,月下旬新增确诊人数呈波动下降趋势,A选项正确;对于B选项,由图象可知,随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数,B选项正确;对于C选项,由图象可知,月日至月日新增确诊人
9、数波动最大,C选项正确;对于D选项,在月日及以前,我国新型冠状病毒肺炎新增确诊人数大于新增治愈人数,我国新型冠状病毒肺炎累计确诊人数不在月日左右达到峰值,D选项错误.故选:D.【点睛】本题考查统计图表的应用,考查数据处理能力,属于基础题.5A【解析】要计算这个数的和,这就需要循环50次,这样可以确定判断语句,根据累加最的变化规律可以确定语句.【详解】因为计算这个数的和,循环变量的初值为1,所以步长应该为1,故判断语句应为,第个数是,第个数比第个数大 ,第个数比第个数大,第个数比第个数大,这样可以确定语句为,故本题选A.【点睛】本题考查了补充循环结构,正确读懂题意是解本题的关键.6C【解析】由题
10、得,又,联立解方程组即可得,进而得出双曲线方程.【详解】由题得 又该双曲线的一条渐近线方程为,且被圆x2+y22cx0截得的弦长为2,所以 又 由可得:,所以双曲线的标准方程为.故选:C【点睛】本题主要考查了双曲线的简单几何性质,圆的方程的有关计算,考查了学生的计算能力.7A【解析】根据向量共线的性质依次判断充分性和必要性得到答案.【详解】若,则与共线,且方向相同,充分性;当与共线,方向相反时,故不必要.故选:.【点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.8A【解析】先利用换底公式将对数都化为以2为底,利用对数函数单调性可比较,再由中间值1可得三者的大小关系.【详解】,
11、因此,故选:A.【点睛】本题主要考查了利用对数函数和指数函数的单调性比较大小,属于基础题.9C【解析】根据题意,分两种情况进行讨论:语文和数学都安排在上午;语文和数学一个安排在上午,一个安排在下午.分别求出每一种情况的安排方法数目,由分类加法计数原理可得答案【详解】根据题意,分两种情况进行讨论:语文和数学都安排在上午,要求节语文课必须相邻且节数学课也必须相邻,将节语文课和节数学课分别捆绑,然后在剩余节课中选节到上午,由于节英语课不加以区分,此时,排法种数为种;语文和数学都一个安排在上午,一个安排在下午.语文和数学一个安排在上午,一个安排在下午,但节语文课不加以区分,节数学课不加以区分,节英语课
12、也不加以区分,此时,排法种数为种.综上所述,共有种不同的排法.故选:C【点睛】本题考查排列、组合的应用,涉及分类计数原理的应用,属于中等题10C【解析】设出等差数列的首项和公差,即可根据题意列出两个方程,求出通项公式,从而求得【详解】设等差数列的首项为,公差为,则,解得,即有故选:C【点睛】本题主要考查等差数列的通项公式的求法和应用,涉及等差数列的前项和公式的应用,属于容易题11C【解析】根据线面平行与垂直的判定与性质逐个分析即可.【详解】因为,所以,因为E、F分别是AB、AD的中点,所以,所以,因为面面,所以.选项A、D显然成立;因为,平面,所以平面,因为平面,所以,所以B项成立;易知平面M
13、EF,平面MPQ,而直线与不垂直,所以C项不成立.故选:C【点睛】本题考查直线与平面的位置关系.属于中档题.12A【解析】试题分析:,所以,即集合中共有3个元素,故选A考点:集合的运算二、填空题:本题共4小题,每小题5分,共20分。132【解析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项,再根据常数项等于-160求得实数a的值【详解】二项式(ax-1x)6的展开式中的通项公式为Tr+1=C6r(-1)ra6-rx6-2r,令6-2r=0,求得r=3,可得常数项为-C63a3=-160,a=2,故答案为:2【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,
14、二项式系数的性质,属于基础题14【解析】由偶函数的性质直接求解即可【详解】.故答案为【点睛】本题考查函数的奇偶性,对数函数的运算,考查运算求解能力151【解析】设,写出直线方程代入抛物线方程后应用韦达定理求得,由抛物线定义得焦点弦长,求得,再写出的垂直平分线方程,得,从而可得结论【详解】抛物线的焦点坐标为,直线的方程为,据得.设,则.线段垂直平分线方程为,令,则,所以,所以.故答案为:1【点睛】本题考查抛物线的焦点弦问题,根据抛物线的定义表示出焦点弦长是解题关键161【解析】由二项式定理及展开式通项公式得:,解得,令得:展开式中各项系数和,得解【详解】解:由的展开式的通项,令,得含有的项的系数
15、是,解得,令得:展开式中各项系数和为,故答案为:1【点睛】本题考查了二项式定理及展开式通项公式,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)【解析】(1)化简得到,取,解得答案.(2),解得,根据余弦定理得到,再用一次余弦定理解得答案.【详解】(1).取,解得.(2),因为, 故,.根据余弦定理:,.【点睛】本题考查了三角恒等变换,三角函数单调性,余弦定理,意在考查学生对于三角函数知识的综合应用.18()函数在上单调递减,在单调递增;();()证明见解析【解析】()先求出函数f(x)的导数,通过解关于导数的不等式,从而求出函数的单调区间;()设g(
16、x)f(x)ax,先求出函数g(x)的导数,通过讨论a的范围,得到函数的单调性,从而求出a的最小值;()先求出数列是以为首项,1为公差的等差数列,问题转化为证明:,通过换元法或数学归纳法进行证明即可【详解】解:() f(x)的定义域为(1,+),当时,f(x)2,当时,f(x)2,所以函数f(x)在上单调递减,在单调递增()设,则,因为x2,故,()当a1时,1a2,g(x)2,所以g(x)在2,+)单调递减,而g(2)2,所以对所有的x2,g(x)2,即f(x)ax;()当1a1时,21a1,若,则g(x)2,g(x)单调递增,而g(2)2,所以当时,g(x)2,即f(x)ax;()当a1时
17、,1a1,g(x)2,所以g(x)在2,+)单调递增,而g(2)2,所以对所有的x2,g(x)2,即f(x)ax;综上,a的最小值为1()由(1an+1)(1+an)1得,anan+1anan+1,由a11得,an2,所以,数列是以为首项,1为公差的等差数列,故,由()知a1时,x2,即,x2法一:令,得,即因为,所以,故法二:下面用数学归纳法证明(1)当n1时,令x1代入,即得,不等式成立(1)假设nk(kN*,k1)时,不等式成立,即,则nk+1时,令代入,得,即:,由(1)(1)可知不等式对任何nN*都成立故考点:1利用导数研究函数的单调性;1、利用导数研究函数的最值; 3、数列的通项公
18、式;4、数列的前项和;5、不等式的证明19(1);(2);(3).【解析】(1)利用导数的几何意义计算即可;(2)在上恒成立,只需,注意到;(3)在上有两根,令,求导可得在上单调递减,在上单调递增,所以且,求出的范围即可.【详解】(1)因为,所以,当时,所以切线方程为,即.(2),.因为函数在区间上单调递增,所以,且恒成立,即,所以,即,又,故,所以实数的取值范围是.(3).因为函数在区间上有两个极值点,所以方程在上有两不等实根,即.令,则,由,得,所以在上单调递减,在上单调递增,所以,解得且.又由,所以,且当和时,单调递增,当时,单调递减,是极值点,此时令,则,所以在上单调递减,所以.因为恒
19、成立,所以.若,取,则,所以.令,则,.当时,;当时,.所以,所以在上单调递增,所以,即存在使得,不合题意.满足条件的的最小值为-4.【点睛】本题考查导数的综合应用,涉及到导数的几何意义,利用导数研究函数的单调性、极值点,不等式恒成立等知识,是一道难题.20(1),;(2)【解析】(1)利用代入法消去参数可得到直线的普通方程,利用公式可得到曲线的直角坐标方程;(2)设直线的参数方程为(为参数),代入得,根据直线参数方程的几何意义,利用韦达定理可得结果.【详解】(1)由题意得点的直角坐标为,将点代入得则直线的普通方程为. 由得,即.故曲线的直角坐标方程为. (2)设直线的参数方程为(为参数),代入得 设对应参数为,对应参数为则,且.【点睛】参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式,等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题21()函数在区间上有两个零点.见解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高线密度玻璃纤维直接无捻粗纱项目合作计划书
- 2025办公室租赁合同AA
- 2025年高密度电阻率仪项目合作计划书
- 2025年甲基丙烯酸甲酯项目合作计划书
- 烟囱吊装施工方案
- 围墙刷漆施工方案
- 假植乔木施工方案
- 2025执业医师资格考试考试题库带答案
- 家具定制服务销售代表工作协议3篇
- 宠物转让合同示例3篇
- 绿色医疗器械设计
- 用电协议书范文双方简单一致
- DB11T 2155-2023 建设工程消防验收现场检查评定规程
- 2024年电工(高级技师)考前必刷必练题库500题(含真题、必会题)
- DB34T 2146-2014 产品质量监督抽查检验报告编制规范
- 废品站承包小区合同(2篇)
- 浅谈电力调度数据网的传输特性
- 2024年青海省中考英语试卷真题(含答案解析)
- 高标准农田设计实施方案(技术标)
- 苹果酒的家庭做法-苹果酒的效果和作用
- 海上基本急救全套教学课件
评论
0/150
提交评论