云南师大2021-2022学年高三第一次调研测试数学试卷含解析_第1页
云南师大2021-2022学年高三第一次调研测试数学试卷含解析_第2页
云南师大2021-2022学年高三第一次调研测试数学试卷含解析_第3页
云南师大2021-2022学年高三第一次调研测试数学试卷含解析_第4页
云南师大2021-2022学年高三第一次调研测试数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则( )ABCD2已知向量,则与的夹角为( )ABCD3刘徽是我国魏晋时期伟大的数学家,他在九章算术中对勾股定理的证明如图所示.“勾自乘为朱方,股自乘为青方,令出入相补,各

2、从其类,因就其余不移动也.合成弦方之幂,开方除之,即弦也”.已知图中网格纸上小正方形的边长为1,其中“正方形为朱方,正方形为青方”,则在五边形内随机取一个点,此点取自朱方的概率为( )ABCD4某几何体的三视图如图所示,则该几何体的体积为( )ABCD5已知平面向量,满足,且,则( )A3BCD56已知椭圆的短轴长为2,焦距为分别是椭圆的左、右焦点,若点为上的任意一点,则的取值范围为( )ABCD7一个组合体的三视图如图所示(图中网格小正方形的边长为1),则该几何体的体积是( )ABCD8已知为非零向量,“”为“”的( )A充分不必要条件B充分必要条件C必要不充分条件D既不充分也不必要条件9已

3、知实数满足,则的最小值为( )ABCD10一个几何体的三视图如图所示,则该几何体的表面积为( )ABCD11已知集合,若,则实数的取值范围为( )ABCD12如图,长方体中,点T在棱上,若平面.则( )A1BC2D二、填空题:本题共4小题,每小题5分,共20分。13曲线在点处的切线方程是_.14已知向量=(4,3),=(6,m),且,则m=_.15三棱锥中,点是斜边上一点.给出下列四个命题:若平面,则三棱锥的四个面都是直角三角形;若,平面,则三棱锥的外接球体积为;若,在平面上的射影是内心,则三棱锥的体积为2;若,平面,则直线与平面所成的最大角为.其中正确命题的序号是_(把你认为正确命题的序号都

4、填上)16设函数,则满足的的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)设,求函数的单调区间,并证明函数有唯一零点.(2)若函数在区间上不单调,证明:.18(12分)一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端某种植户对一块地的个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为,且每粒种子是否发芽相互独立对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种(1)当取何值时,有3个坑要补播种的概率最大?最大概率为多少?(2)当时,用表示要补播种的坑的个数,求的分布列与数学期望19(12分)如图

5、,设点为椭圆的右焦点,圆过且斜率为的直线交圆于两点,交椭圆于点两点,已知当时,(1)求椭圆的方程.(2)当时,求的面积.20(12分)已知函数(1)若不等式有解,求实数的取值范围;(2)函数的最小值为,若正实数,满足,证明:21(12分)已知函数(1)若曲线在处的切线为,试求实数,的值;(2)当时,若有两个极值点,且,若不等式恒成立,试求实数m的取值范围22(10分)函数(1)证明:;(2)若存在,且,使得成立,求取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】求出集合,计算出和,即可得出结论.【详解】,.故选

6、:C.【点睛】本题考查交集和并集的计算,考查计算能力,属于基础题.2B【解析】由已知向量的坐标,利用平面向量的夹角公式,直接可求出结果.【详解】解:由题意得,设与的夹角为,由于向量夹角范围为:,.故选:B.【点睛】本题考查利用平面向量的数量积求两向量的夹角,注意向量夹角的范围.3C【解析】首先明确这是一个几何概型面积类型,然后求得总事件的面积和所研究事件的面积,代入概率公式求解.【详解】因为正方形为朱方,其面积为9,五边形的面积为,所以此点取自朱方的概率为.故选:C【点睛】本题主要考查了几何概型的概率求法,还考查了数形结合的思想和运算求解的能力,属于基础题.4D【解析】结合三视图可知,该几何体

7、的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,分别求出体积即可.【详解】由三视图可知该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,则上半部分的半个圆锥的体积,下半部分的正三棱柱的体积,故该几何体的体积.故选:D.【点睛】本题考查三视图,考查空间几何体的体积,考查空间想象能力与运算求解能力,属于中档题.5B【解析】先求出,再利用求出,再求.【详解】解:由,所以,故选:B【点睛】考查向量的数量积及向量模的运算,是基础题.6D【解析】先求出椭圆方程,再利用椭圆的定义得到,利用二次函数的性质可求,从而可得的取值范围.【详解】由题设有,故,故椭圆,因为

8、点为上的任意一点,故.又,因为,故,所以.故选:D.【点睛】本题考查椭圆的几何性质,一般地,如果椭圆的左、右焦点分别是,点为上的任意一点,则有,我们常用这个性质来考虑与焦点三角形有关的问题,本题属于基础题.7C【解析】根据组合几何体的三视图还原出几何体,几何体是圆柱中挖去一个三棱柱,从而解得几何体的体积.【详解】由几何体的三视图可得,几何体的结构是在一个底面半径为1的圆、高为2的圆柱中挖去一个底面腰长为的等腰直角三角形、高为2的棱柱,故此几何体的体积为圆柱的体积减去三棱柱的体积,即,故选C.【点睛】本题考查了几何体的三视图问题、组合几何体的体积问题,解题的关键是要能由三视图还原出组合几何体,然

9、后根据几何体的结构求出其体积.8B【解析】由数量积的定义可得,为实数,则由可得,根据共线的性质,可判断;再根据判断,由等价法即可判断两命题的关系.【详解】若成立,则,则向量与的方向相同,且,从而,所以;若,则向量与的方向相同,且,从而,所以.所以“”为“”的充分必要条件.故选:B【点睛】本题考查充分条件和必要条件的判定,考查相等向量的判定,考查向量的模、数量积的应用.9A【解析】所求的分母特征,利用变形构造,再等价变形,利用基本不等式求最值.【详解】解:因为满足,则,当且仅当时取等号,故选:【点睛】本题考查通过拼凑法利用基本不等式求最值.拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键.

10、(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标(3)拆项、添项应注意检验利用基本不等式的前提.10B【解析】由题意首先确定几何体的空间结构特征,然后结合空间结构特征即可求得其表面积.【详解】由三视图可知,该几何体为边长为正方体挖去一个以为球心以为半径球体的,如图,故其表面积为,故选:B.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理(3)圆柱、圆锥

11、、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和11A【解析】解一元二次不等式化简集合的表示,求解函数的定义域化简集合的表示,根据可以得到集合、之间的关系,结合数轴进行求解即可.【详解】,.因为,所以有,因此有.故选:A【点睛】本题考查了已知集合运算的结果求参数取值范围问题,考查了解一元二次不等式,考查了函数的定义域,考查了数学运算能力.12D【解析】根据线面垂直的性质,可知;结合即可证明,进而求得.由线段关系及平面向量数量积定义即可求得.【详解】长方体中,点T在棱上,若平面.则,则,所以, 则,所以,故选:D.【点睛】本题考查了直线与平面垂直

12、的性质应用,平面向量数量积的运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】利用导数的几何意义计算即可.【详解】由已知,所以,又,所以切线方程为,即.故答案为:【点睛】本题考查导数的几何意义,考查学生的基本计算能力,要注意在某点处的切线与过某点的切线的区别,是一道容易题.148.【解析】利用转化得到加以计算,得到.【详解】向量则.【点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题.15【解析】对,由线面平行的性质可判断正确;对,三棱锥外接球可看作正方体的外接球,结合外接球半径公式即可求解;对,结合题意作出图形,

13、由勾股定理和内接圆对应面积公式求出锥体的高,则可求解;对,由动点分析可知,当点与点重合时,直线与平面所成的角最大,结合几何关系可判断错误;【详解】对于,因为平面,所以,又,所以平面,所以,故四个面都是直角三角形,正确;对于,若,平面,三棱锥的外接球可以看作棱长为4的正方体的外接球,体积为,正确;对于,设内心是,则平面,连接,则有,又内切圆半径,所以,故,三棱锥的体积为,正确; 对于,若,平面,则直线与平面所成的角最大时,点与点重合,在中,即直线与平面所成的最大角为,不正确,故答案为:.【点睛】本题考查立体几何基本关系的应用,线面垂直的性质及判定、锥体体积、外接球半径求解,线面角的求解,属于中档

14、题16【解析】当时,函数单调递增,当时,函数为常数,故需满足,且,解得答案.【详解】,当时,函数单调递增,当时,函数为常数,需满足,且,解得.故答案为:.【点睛】本题考查了根据函数单调性解不等式,意在考查学生对于函数性质的灵活运用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)为增区间;为减区间.见解析(2)见解析【解析】(1)先求得的定义域,然后利用导数求得的单调区间,结合零点存在性定理判断出有唯一零点.(2)求得的导函数,结合在区间上不单调,证得,通过证明,证得成立.【详解】(1)函数的定义域为,由,解得为增区间;由解得为减区间.下面证明函数只有一个零点:,所以函

15、数在区间内有零点,函数在区间上没有零点,故函数只有一个零点.(2)证明:函数,则当时,不符合题意;当时,令,则,所以在上单调增函数,而,又区间上不单调,所以存在,使得在上有一个零点,即,所以,且,即两边取自然对数,得即,要证,即证,先证明:,令,则在上单调递增,即,在中令,令,即即,.【点睛】本小题主要考查利用导数研究函数的单调区间和零点,考查利用导数证明不等式,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于难题.18(1)当或时,有3个坑要补播种的概率最大,最大概率为; (2)见解析.【解析】(1)将有3个坑需要补种表示成n的函数,考查函数随n的变化情况,即可得到n为何值时有

16、3个坑要补播种的概率最大(2)n1时,X的所有可能的取值为0,1,2,3,1分别计算出每个变量对应的概率,列出分布列,求期望即可【详解】(1)对一个坑而言,要补播种的概率,有3个坑要补播种的概率为.欲使最大,只需,解得,因为,所以当时,;当时,;所以当或时,有3个坑要补播种的概率最大,最大概率为.(2)由已知,的可能取值为0,1,2,3,1.,所以的分布列为01231的数学期望.【点睛】本题考查了古典概型的概率求法,离散型随机变量的概率分布,二项分布,主要考查简单的计算,属于中档题19(1)(2)【解析】(1)先求出圆心到直线的距离为,再根据得到,解之即得a的值,再根据c=1求出b的值得到椭圆

17、的方程.(2)先求出,再求得的面积.【详解】(1)因为直线过点,且斜率.所以直线的方程为,即,所以圆心到直线的距离为, 又因为,圆的半径为,所以,即,解之得,或(舍去).所以,所以所示椭圆的方程为 .(2)由(1)得,椭圆的右准线方程为,离心率,则点到右准线的距离为,所以,即,把代入椭圆方程得,因为直线的斜率,所以, 因为直线经过和,所以直线的方程为,联立方程组得,解得或,所以, 所以的面积.【点睛】本题主要考查直线和圆、椭圆的位置关系,考查椭圆的方程的求法,考查三角形面积的计算,意在考查学生对这些知识的掌握水平和分析推理计算能力.20(1)(2)见解析【解析】(1)分离得到,求的最小值即可求得的取值范围;(2)先求出,得到,利用乘变化即可证明不等式.【详解】解:(1)设,在上单调递减,在上单调递增故有解,即的取值范围为(2),当且仅当时等号成立,即当且仅当,时等号成立,即成立【点睛】此题考查不等式的证明,注意定值乘变化的灵活应用,属于较易题目.21(1);(2)【解析】(1)根据题意,求得的值,根据切点在切线上以及斜率等于,构造方程组求得的值;(2)函数有两个极值点,等价于方程的两个正根,不等式恒成立,等价于恒成立,令,求出导数,判断单调性,即可得到的范围,即的范围.【详解】(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论