版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1正方形的边长为,是正方形内部(不包括正方形的边)一点,且,则的最小值为( )ABCD2如果直线与圆相交,则点与圆C
2、的位置关系是( )A点M在圆C上B点M在圆C外C点M在圆C内D上述三种情况都有可能3设,为两个平面,则的充要条件是A内有无数条直线与平行B内有两条相交直线与平行C,平行于同一条直线D,垂直于同一平面4设,满足约束条件,则的最大值是( )ABCD5已知集合,若,则( )A4B4C8D86第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是( )ABCD7已知单
3、位向量,的夹角为,若向量,且,则( )A2B2C4D68高三珠海一模中,经抽样分析,全市理科数学成绩X近似服从正态分布,且从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为( )A40B60C80D1009在我国传统文化“五行”中,有“金、木、水、火、土”五个物质类别,在五者之间,有一种“相生”的关系,具体是:金生水、水生木、木生火、火生土、土生金.从五行中任取两个,这二者具有相生关系的概率是( )A0.2B0.5C0.4D0.810已知的展开式中的常数项为8,则实数( )A2B-2C-3D311天干地支,简称为干支,源自中国远古时代对天象的观测.“甲、乙、丙
4、、丁、戊、己、庚、辛、壬、癸”称为十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”称为十二地支.干支纪年法是天干和地支依次按固定的顺序相互配合组成,以此往复,60年为一个轮回.现从农历2000年至2019年共20个年份中任取2个年份,则这2个年份的天干或地支相同的概率为( )ABCD12在中,分别为,的中点,为上的任一点,实数,满足,设、的面积分别为、,记(),则取到最大值时,的值为( )A1B1CD二、填空题:本题共4小题,每小题5分,共20分。13已知平面向量,且,则向量与的夹角的大小为_14已知双曲线:(,),直线:与双曲线的两条渐近线分别交于,两点.若(点为坐标原点)的面积为
5、32,且双曲线的焦距为,则双曲线的离心率为_.15的展开式中,的系数为_.16在的展开式中,的系数为_用数字作答三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在中,角所对的边分别为,的面积.(1)求角C;(2)求周长的取值范围.18(12分)在中,角的对边分别为,若.(1)求角的大小;(2)若,为外一点,求四边形面积的最大值.19(12分)已知圆外有一点,过点作直线(1)当直线与圆相切时,求直线的方程;(2)当直线的倾斜角为时,求直线被圆所截得的弦长20(12分)如图,过点且平行与x轴的直线交椭圆于A、B两点,且.(1)求椭圆的标准方程;(2)过点M且斜率为正的直
6、线交椭圆于段C、D,直线AC、BD分别交直线于点E、F,求证:是定值.21(12分)已知函数.(1)解不等式;(2)若,求证:.22(10分)已知函数.(1)讨论的单调性;(2)若函数在区间上的最小值为,求m的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】分别以直线为轴,直线为轴建立平面直角坐标系,设,根据,可求,而,化简求解.【详解】解:建立以为原点,以直线为轴,直线为轴的平面直角坐标系.设,则,由,即,得.所以=,所以当时,的最小值为.故选:C.【点睛】本题考查向量的数量积的坐标表示,属于基础题.2B【解析】根
7、据圆心到直线的距离小于半径可得满足的条件,利用与圆心的距离判断即可.【详解】直线与圆相交,圆心到直线的距离,即也就是点到圆的圆心的距离大于半径即点与圆的位置关系是点在圆外故选:【点睛】本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题3B【解析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断【详解】由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质定理知,若,则内任意一条直线都与平行,所以内两条相交直线都与平行是的必要条件,故选B【点睛】面面平行的判定问题要紧扣面面平行判定定理,
8、最容易犯的错误为定理记不住,凭主观臆断,如:“若,则”此类的错误4D【解析】作出不等式对应的平面区域,由目标函数的几何意义,通过平移即可求z的最大值【详解】作出不等式组的可行域,如图阴影部分,作直线:在可行域内平移当过点时,取得最大值.由得:,故选:D【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,属于基础题.5B【解析】根据交集的定义,可知,代入计算即可求出.【详解】由,可知,又因为,所以时,解得.故选:B.【点睛】本题考查交集的概念,属于基础题.6A【解析】根据题意,五人分成四组,先求出两人组成一组的所有可能的分组种数,再将甲乙组成一组的情况,即可求出概率.【
9、详解】五人分成四组,先选出两人组成一组,剩下的人各自成一组,所有可能的分组共有种,甲和乙分在同一组,则其余三人各自成一组,只有一种分法,与场地无关,故甲和乙恰好在同一组的概率是.故选:A.【点睛】本题考查组合的应用和概率的计算,属于基础题.7C【解析】根据列方程,由此求得的值,进而求得.【详解】由于,所以,即,解得.所以所以.故选:C【点睛】本小题主要考查向量垂直的表示,考查向量数量积的运算,考查向量模的求法,属于基础题.8D【解析】由正态分布的性质,根据题意,得到,求出概率,再由题中数据,即可求出结果.【详解】由题意,成绩X近似服从正态分布,则正态分布曲线的对称轴为,根据正态分布曲线的对称性
10、,求得,所以该市某校有500人中,估计该校数学成绩不低于110分的人数为人,故选:.【点睛】本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易.9B【解析】利用列举法,结合古典概型概率计算公式,计算出所求概率.【详解】从五行中任取两个,所有可能的方法为:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共种,其中由相生关系的有金水、木水、木火、火土、金土,共种,所以所求的概率为.故选:B【点睛】本小题主要考查古典概型的计算,属于基础题.10A【解析】先求的展开式,再分类分析中用哪一项与相乘,将所有结果为常数的相加,即为展开式的常数项,从而求出的值.【详解】展开式的通项为,
11、当取2时,常数项为,当取时,常数项为由题知,则.故选:A.【点睛】本题考查了两个二项式乘积的展开式中的系数问题,其中对所取的项要进行分类讨论,属于基础题.11B【解析】利用古典概型概率计算方法分析出符合题意的基本事件个数,结合组合数的计算即可出求得概率.【详解】20个年份中天干相同的有10组(每组2个),地支相同的年份有8组(每组2个),从这20个年份中任取2个年份,则这2个年份的天干或地支相同的概率.故选:B.【点睛】本小题主要考查古典概型的计算,考查组合数的计算,考查学生分析问题的能力,难度较易.12D【解析】根据三角形中位线的性质,可得到的距离等于的边上高的一半,从而得到,由此结合基本不
12、等式求最值,得到当取到最大值时,为的中点,再由平行四边形法则得出,根据平面向量基本定理可求得,从而可求得结果.【详解】如图所示:因为是的中位线,所以到的距离等于的边上高的一半,所以,由此可得,当且仅当时,即为的中点时,等号成立,所以,由平行四边形法则可得,将以上两式相加可得,所以,又已知,根据平面向量基本定理可得,从而.故选:D【点睛】本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由,解得,进而求出,即可得出结果.【详解】解:因为,所以,解得,所以,所以向量与的夹角的大小为都答案
13、为:.【点睛】本题主要考查平面向量的运算,平面向量垂直,向量夹角等基础知识;考查运算求解能力,属于基础题14或【解析】用表示出的面积,求得等量关系,联立焦距的大小,以及,即可容易求得,则离心率得解.【详解】联立解得.所以的面积,所以.而由双曲线的焦距为知,所以.联立解得或故双曲线的离心率为或.故答案为:或.【点睛】本题考查双曲线的方程与性质,考查运算求解能力以及函数与方程思想,属中档题.1516【解析】要得到的系数,只要求出二项式中的系数减去的系数的2倍即可【详解】的系数为.故答案为:16【点睛】此题考查二项式的系数,属于基础题.161【解析】利用二项展开式的通项公式求出展开式的通项,令,求出
14、展开式中的系数【详解】二项展开式的通项为 令得的系数为 故答案为1【点睛】利用二项展开式的通项公式是解决二项展开式的特定项问题的工具三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17()()【解析】()由可得到,代入,结合正弦定理可得到,再利用余弦定理可求出的值,即可求出角;()由,并结合正弦定理可得到,利用,可得到,进而可求出周长的范围【详解】解:()由可知,.由正弦定理得.由余弦定理得,.()由()知,.的周长为 .,,的周长的取值范围为.【点睛】本题考查了正弦定理、余弦定理在解三角形中的运用,考查了三角形的面积公式,考查了学生分析问题、解决问题的能力,属于基础题18(1)
15、(2)【解析】(1)根据正弦定理化简等式可得,即;(2)根据题意,利用余弦定理可得,再表示出,表示出四边形,进而可得最值.【详解】(1),由正弦定理得: 在中,则,即,即.(2)在中,又,则为等边三角形,又,-当时,四边形的面积取最大值,最大值为.【点睛】本题主要考查了正弦定理,余弦定理,三角形面积公式的应用,属于基础题19(1)或(2)【解析】(1)根据题意分斜率不存在和斜率存在两种情况即可求得结果;(2)先求出直线方程,然后求得圆心与直线的距离,由弦长公式即可得出答案.【详解】解: (1)由题意可得,直线与圆相切当斜率不存在时,直线的方程为,满足题意当斜率存在时,设直线的方程为,即,解得直
16、线的方程为直线的方程为或(2)当直线的倾斜角为时,直线的方程为圆心到直线的距离为弦长为【点睛】本题考查了直线的方程、直线与圆的位置关系、点到直线的距离公式及弦长公式,培养了学生分析问题与解决问题的能力.20(1);(2)证明见解析.【解析】(1)由题意求得的坐标,代入椭圆方程求得,由此求得椭圆的标准方程.(2)设出直线的方程,联立直线的方程和椭圆方程,可得关于的一元二次方程,设出的坐标,分别求出直线与直线的方程,从而求得两点的纵坐标,利用根与系数关系可化简证得为定值.【详解】(1)由已知可得:,代入椭圆方程得:椭圆方程为;(2)设直线CD的方程为,代入,得:设,则有,则AC的方程为,令,得BD的方程为,令,得,证毕.【点睛】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,是难题21(1);(2)证明见解析.【解析】(1)分、三种情况解不等式,即可得出该不等式的解集;(2)利用分析法可知,要证,即证,只需证明即可,因式分解后,判断差值符号即可,由此证明出所证不等式成立.【详解】(1).当时,由,解得,此时;当时,不成立;当时,由,解得,此时.综上所述,不等式的解集为;(2)要证,即证,因为,所以,.所以,.故所证不等式成立.【点睛】本题考查绝对值不等式的求解,同时也考查了利用分析法和作差法证明不等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 彩礼不退怎么写在协议书
- ups巡检维护协议书
- 2025年RCEP项下玩具行业原产地规则应用考核试卷
- 牙科矫正退费协议书
- 疫情期捐赠协议书
- 人工施工安全协议书
- 装修款补充协议书
- 城市更新与城市夜景照明规划设计考核试卷
- 2025年航空港口行业智能物流枢纽建设与航空港口物流业务拓展研究报告及未来发展趋势预测
- 2025年互联网与信息技术岗位晋升考试数字人交互设计与应用跨域融合考核试卷
- 小学消防安全课件演示
- 万达装修施工方案设计
- 八年级数学上学期期中模拟卷(人教版2024)
- 2025年10月18日湖北省直遴选笔试真题及解析(市直卷)
- 全国大学生职业规划大赛《城市轨道交通工程技术》专业生涯发展展示【高职(专科)】
- 2025年江苏(统招专升本)英语考试试题及答案
- 语言经济效应评估模型-洞察与解读
- 医院青年文明号汇报材料
- 无源医疗器械设计开发流程
- 全国大学生职业规划大赛《现代殡葬技术与管理》专业生涯发展展示【高职(专科)】
- 2025年儿童营养与健康知识竞赛答案及解析
评论
0/150
提交评论