版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、八年级数学第二学期第二十二章四边形达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知在正方形ABCD中,厘米,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动
2、,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒若存在a与t的值,使与全等时,则t的值为( )A2B2或1.5C2.5D2.5或22、如图,矩形ABCD的对角线AC和BD相交于点O,若AOD120,AC16,则AB的长为()A16B12C8D43、四边形的内角和与外角和的数量关系,正确的是()A内角和比外角和大180B外角和比内角和大180C内角和比外角和大360D内角和与外角和相等4、正八边形的外角和为( )ABCD5、如图,在中,对角线AC,BD相交于点O,且ACBC,的面积为48,OA3,则BC的长为( )A6B8C12D136、一个多边形每个外角都等于36,
3、则这个多边形是几边形( )A7B8C9D107、如图,菱形ABCD中,BAD = 60,AB = 6,点E,F分别在边AB,AD上,将AEF沿EF翻折得到GEF,若点G恰好为CD边的中点,则AE的长为( )ABCD38、欧几里得在几何原本中,记载了用图解法解方程x2+axb2的方法,类似地我们可以用折纸的方法求方程x2+x10的一个正根如图,一张边长为1的正方形的纸片ABCD,先折出AD,BC的中点E,F,再沿过点A的直线折叠使AD落在线段AF上,点D的对应点为点H,折痕为AG,点G在边CD上,连接GH,GF,长度恰好是方程x2+x10的一个正根的线段为()A线段BFB线段DGC线段CGD线段
4、GF9、在平行四边形ABCD中,A30,那么B与A的度数之比为( )A4:1B5:1C6:1D7:110、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是( )A任意四边形B平行四边形C对角线相等的四边形D对角线垂直的四边形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个多边形,每个外角都是,则这个多边形是_边形2、如图,矩形ABCD中,AC、BD相交于点O且AC=12,如果AOD=60,则DC=_3、过五边形一个顶点的对角线共有_条4、一个矩形的两条对角线所夹的锐角是60,这个角所对的边长为10cm,则该矩形的面积为_5、如图,在平行四
5、边形ABCD中,AB4,BC5,以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是 _三、解答题(5小题,每小题10分,共计50分)1、已知:在中,点、点、点分别是、的中点,连接、(1)如图1,若,求证:四边形为菱形;(2)如图2,过作交延长线于点,连接,在不添加任何辅助线的情况下,请直接写出图中所有与面积相等的平行四边形2、如图,把矩形纸片放入直角坐标系中,使分别落在x轴,y轴的正半轴上,连接,且(1)求所在直线的解析式;(2)将纸片折叠,使点A与点C重合(折痕为),求折叠后纸
6、片重叠部分的面积;(3)若过一定点M的任意一条直线总能把矩形的面积分为相等的两部分,则点M的坐标为_3、在中,将ABO绕点O逆时针方向旋转90得到(1)则线段的长是_,_(2)连接求证四边形是平行四边形;(3)求四边形的面积?4、如图,矩形ABCD中,E、F是BC上的点,DAE=ADF求证:BF=CE5、如图,正方形ABCO的边OA、OC在坐标物上,点B坐标为将正方形ABCO绕点A顺时针旋转角度,得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P连AP、AG(1)求证:;(2)求的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当时,求直线PE的解析式(可能
7、用到的数据:在中,30内角对应的直角边等于斜边的一半)(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由-参考答案-一、单选题1、D【分析】根据题意分两种情况讨论若BPECQP,则BP=CQ,BE=CP;若BPECPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若BPECQP,则BP=CQ,BE=CP,AB=BC=10厘米,AE=4厘米,BE=CP=6厘米,BP=10-6=4厘米,运动时间t=42=2(秒);当,即点Q的运动速度与点
8、P的运动速度不相等,BPCQ,B=C=90,要使BPE与OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可点P,Q运动的时间t=(秒).综上t的值为2.5或2.故选:D【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等同时要注意分类思想的运用2、C【分析】由题意可得AOBOCODO8,可证ABO是等边三角形,可得AB8【详解】解:四边形ABCD是矩形,AC2AO2CO,BD2BO2DO,ACBD16,OAOB8,AOD120,AOB60,AOB是等边三角形,ABAOBO8,故选:C【
9、点睛】本题考查了矩形的性质,等边三角形的性质和判定,熟练掌握矩形的性质是本题的关键3、D【分析】直接利用多边形内角和定理分别分析得出答案【详解】解:A四边形的内角和与外角和相等,都等于360,故本选项表述错误;B四边形的内角和与外角和相等,都等于360,故本选项表述错误;C六四边形的内角和与外角和相等,都等于360,故本选项表述错误;D四边形的内角和与外角和相等,都等于360,故本选项表述正确故选:D【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是3604、A【分析】根据多边形的外角和都是即可得解【详解】解:多边形的外角和都是,正八边形的外角和为,故选:A【点睛】
10、此题考查了多边形的内角与外角,熟记多边形的外角和是是解题的关键5、B【分析】由平行四边形对角线互相平分得到AC的值,由ACBC,可得,代入即可求出BC边长.【详解】解:在中,对角线AC,BD相交于点O,OA=OC,OA=3,AC=2OA=6,ACBC,BC=8.故选:B【点睛】此题考查平行四边形的性质和平行四边形的面积,掌握平行四边形对角线互相平分的性质是解答此题的关键.6、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数【详解】解:36036=10,这个多边形的边数是10故选D【点睛】本题考查了多边形内角与外角,外角和的大小与
11、多边形的边数无关,熟练掌握多边形内角与外角是解题关键7、B【分析】过点D作,垂足为点H,连接BD和BG,利用菱形及等边三角形的性质,求出,在中,求出DH的长,进而求出BG 的长,设,在中,利用勾股定理,列方程,求出的值即可【详解】解:过点D作,垂足为点H,连接BD和BG,如下图所示:四边形ABCD是菱形,与是等边三角形,且点G恰好为CD边的中点,平分AB,在中,由勾股定理可知:, ,由折叠可知:,故有, 设,则,在中,由勾股定理可知:, 即,解得,故选:B【点睛】本题主要是考查了菱形、等边三角形的性质以及勾股定理列方程求边长,熟练综合利用菱形以及等边三角形的性质,求出对应的边或角,在直角三角形
12、中,找到边之间的关系,设边长,利用勾股定理列方程,这是解决本题的关键8、B【分析】首先根据方程x2+x-1=0解出正根为,再判断这个数值和题目中的哪条线段接近线段BF=0.5排除,其余三条线段可以通过设未知数找到等量关系利用正方形的面积等于图中各个三角形的面积和,列等量关系设DG=m,则GC=1-m,从而可以用m表示等式【详解】解:设DG=m,则GC=1-m由题意可知:ADGAHG,F是BC的中点,DG=GH=m,FC=0.5S正方形=SABF+SADG+SCGF+SAGF,11=1+1m+(1-m)+m,m=x2+x-1=0的解为:x=,取正值为x=这条线段是线段DG故选:B【点睛】此题考查
13、的是一元二次方程的解法,运用勾股定理和面积法找到线段的关系是解题的关键9、B【分析】根据平行四边形的性质先求出B的度数,即可得到答案【详解】解:四边形ABCD是平行四边形,ADBC,B=180-A=150,B:A=5:1,故选B【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补10、B【分析】根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状【详解】解:,a=b,c=d,四边形四条边长分别是a,b,c,d,其中a,b为对边,c、d是对边,该四边形是平行四边形,故选:B【点睛】此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练
14、掌握完全平方公式分解因式是解题的关键二、填空题1、六6【分析】根据正多边形的性质,边数等于360除以每一个外角的度数【详解】一个多边形的每个外角都是60,n=36060=6,故答案为:六【点睛】本题主要考查了利用多边形的外角和,熟练掌握多边形外角和360是解决问题的关键2、【分析】根据矩形的对角线互相平分且相等可得OAOD,然后判断出AOD是等边三角形,再根据勾股定理解答即可【详解】解:四边形ABCD是矩形,OAODAC126,ADC=90,AOD60,AOD是等边三角形,ADOA6,故答案为:【点睛】本题考查了矩形的性质和勾股定理以及等边三角形的判定,解题关键是根据矩形的性质得出AOD是等边
15、三角形3、2【分析】画出图形,直接观察即可解答【详解】解:如图所示,过五边形一个顶点的对角线共有2条;故答案为:2【点睛】本题考查了多边形对角线的条数,解题关键是明确过n边形的顶点可引出(n-3)条对角线4、【分析】先根据矩形的性质证明ABC是等边三角形,得到,则,然后根据勾股定理求出,最后根据矩形面积公式求解即可【详解】:如图所示,在矩形ABCD中,AOB=60,四边形ABCD是矩形,ABC=90,ABC是等边三角形,故答案为:【点睛】本题主要考查了矩形的性质,勾股定理,等边三角形的性质与判定,解题的关键在于能够熟练掌握矩形的性质5、1【分析】根据基本作图,得到EC是BCD的平分线,由ABC
16、D,得到BEC=ECD=ECB,从而得到BE=BC,利用线段差计算即可【详解】根据基本作图,得到EC是BCD的平分线,ECD=ECB,四边形ABCD是平行四边形,ABCD,BEC=ECD,BEC=ECB,BE=BC=5,AE= BE-AB=5-4=1,故答案为:1【点睛】本题考查了角的平分线的尺规作图,等腰三角形的判定,平行线的性质,平行四边形的性质,熟练掌握尺规作图,灵活运用等腰三角形的判定定理是解题的关键三、解答题1、(1)证明见详解;(2)与面积相等的平行四边形有、【分析】(1)根据三角形中位线定理可得:,依据平行四边形的判定定理可得四边形DECF为平行四边形,再由,可得,依据菱形的判定
17、定理即可证明;(2)根据三角形中位线定理及平行四边形的判定定理可得四边形DEFB、DECF、ADFE是平行四边形,根据平行四边形的性质得出与各平行四边形面积之间的关系,再根据平行四边形的判定得出四边形EGCF是平行四边形,根据其性质得到,根据等底同高可得,据此即可得出与面积相等的平行四边形【详解】解:(1)D、E、F分别是AB、AC、BC的中点, 四边形DECF为平行四边形,四边形DECF为菱形;(2)D、E、F分别是AB、AC、BC的中点, ,且,四边形DEFB、DECF、ADFE是平行四边形,四边形EGCF是平行四边形,与面积相等的平行四边形有、【点睛】题目主要考查菱形及平行四边形的判定定
18、理和性质,中位线的性质等,熟练掌握平行四边形及菱形的判定定理及性质是解题关键2、(1);(2)10;(3)(4,2)【分析】(1)首先根据勾股定理求出OC=4,OA=8,然后利用待定系数法求解所在直线的解析式即可;(2)首先由折叠的性质得到AE=CE,然后在RtOCE中,根据勾股定理求出AE=CE=5,然后根据等腰三角形的性质求出CF=CE=5,最后根据三角形面积公式求解即可;(3)根据矩形的中心对称性质可得点M为矩形ABCD对角线的交点,然后根据中点坐标公式求解即可【详解】解:(1)OA=2CO,设OC=x,则OA=2x在RtAOC中,由勾股定理可得OC2+OA2=AC2,x2+(2x)2=
19、(4)2 解得x=4(x=4舍去)OC=4,OA=8A(8,0),C(0,4)设直线AC解析式为y=kx+b,解得,直线AC解析式为y=x+4;(2)由折叠得AE=CE,设AE=CE=y,则OE=8y,在RtOCE中,由勾股定理可得OE2+OC2=CE2,(8y)2+42=y2解得y=5AE=CE=5 在矩形OABC中,BCOA,CFE=AEF,由折叠得AEF=CEF,CFE=CEFCF=CE=5 SCEF=CFOC=54=10 即重叠部分的面积为10;(3)矩形是一个中心对称图形,对称中心是对角线的交点,任何一个经过对角线交点的直线都把矩形的面积平分,所以点M即为矩形ABCD对角线的交点,即
20、M点为AC的中点,A(8,0),C(0,4),M点坐标为(4,2)【点睛】此题考查了矩形的性质,勾股定理,待定系数法求一次函数表达式等知识,解题的关键是熟练掌握矩形的性质,勾股定理,待定系数法求一次函数表达式3、(1)6,;(2)见解析;(3)36【分析】(1)根据旋转的性质得出,由此可得答案;(2)根据题意可得,再根据平行四边形的判定即可得证;(3)利用平行四边形的面积公式求解【详解】解:(1),是等腰直角三角形,将绕点O沿逆时针方向旋转得到, ,故答案为:6,;(2)将绕点O沿逆时针方向旋转得到,四边形是平行四边形(3)四边形OAA1B1的面积=OAA1O=66=36四边形OAA1B1的面积是36【点睛】本题考查了旋转的性质以及平行四边形的判定,熟练掌握旋转的性质是解决本题的关键,注意:旋转前后的两个图形全等4、见解析【分析】先证明,然后证明ABEDCF,再根据全
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版(2024)一年级数学上册期末复习专项突破卷(二)(含答案)
- 黑龙江省智研联盟2026届高三上学期1月份第一次联合考试生物试卷(含答案)
- 2025-2026学年安徽省县域高中合作共享联盟高三(上)期末数学试卷(A卷)(含答案)
- 化工企业三级安全培训课件
- 高层建筑施工技术要点
- 钢结构工程造价控制技术要点
- 2026江苏泰兴市急救中心招聘劳务派遣人员2人备考考试题库及答案解析
- 2026山东事业单位统考济宁嘉祥县招聘34人备考考试试题及答案解析
- 市场调研公司安全管理责任制度
- 2026北京第二外国语学院第一批非事业编制人员招聘5人笔试参考题库及答案解析
- (2025版)颅内动脉粥样硬化性狭窄诊治指南
- 2025年海管水平定向钻穿越方案研究
- 全国网络安全行业职业技能大赛(网络安全管理员)考试题及答案
- 摄影家协会作品评选打分细则
- 电子产品三维建模设计细则
- 2025年中国道路交通毫米波雷达市场研究报告
- 设计交付:10kV及以下配网工程的标准与实践
- 大学高数基础讲解课件
- hop安全培训课件
- 固井质量监督制度
- 中华人民共和国职业分类大典是(专业职业分类明细)
评论
0/150
提交评论