各种热回收形式的比较_第1页
各种热回收形式的比较_第2页
各种热回收形式的比较_第3页
各种热回收形式的比较_第4页
各种热回收形式的比较_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、热管、转轮、板式换热器热回收的比较随着我国经济实力的增长和人民物质文化生活水平的不断提高;高层建筑的 迅速发展,高气密化、高隔热化影响到人们的工作和生活环境,人们对室内空气 品质的要求也越来越高,都渴望拥有一个健康、舒适的室内环境,特别是经历了 SARS的袭击,人们越来越注重室内空气品质,对引进室外新风换气提出了更高 的要求,但是换气必然会带来能量的损失,引入新风需要消耗更多的能量,因此 需要考虑一种有效的节能方法,通过热回收装置使新风和排风进行热交换。热交 换器是空气调节和余热回收的关键装置。一、各类热交换器的性能与利用分析 目前的热交换器有显热和全热回收两种形式。不同形式的性能、效率和利用

2、方式, 设备费的高低、维护保养的难易也各不相同,它们的综合比较如下表所示:热回收方式效率设备 费维护保养辅助设备占用空间交叉污染自身耗能接管灵活抗冻能力使用寿命转轮换热器高高中无大有有差差中热管换热器较高中易无中无无中好优板式显热换热器低低中无大有无差中良板翅式全热换热器较高中中无大有无差中中中间热媒式低低中有中无多好中良下面介绍几种常用的热交换器。1.转轮式全热换热器转轮式换热器的表面为蜂窝状,涂上一层吸附材料作干燥剂。将转轮置于风道之 间,使其分成两部分。来自空调房间的排风从一侧排出,室外空气以相反的方向 从另一侧进入。为加大换热面积,轮子缓慢旋转(1012转/分)。轮子的一半 从较热空气

3、中吸收存储热量,旋转到另一侧时,释放热量,使热量发生转移。附 着表面的干燥剂将来自高湿度的空气流里的湿气冷凝后,通过干燥剂吸收,旋转 到另一侧时,将湿气释放到低湿度的气流里,这个过程将潜热转移。换热器旋转体的两侧设有隔板,使新风与排风逆向流动。转轮芯片用特殊的纸或 铝箔制成,其表面涂上吸湿性涂层,形成热、湿交换的载体,它以10-12r/min 的速度旋转,先把排风中的冷热量收集在蓄热体(转轮芯)里,然后传递给新风, 空气以2.5-3.5m/s的流速通过蓄热体,靠新风与排风的温差和蒸汽分压差来进 行热湿交换。所以,既能回收显热,又能回收潜热。1)转轮换热器的功能与适用范围功能适用范围有优良的吸湿

4、性能,可回收显热与潜热,效率可达70% (有覆有吸湿性涂层的轮体)有湿度要求的空调系统,如纺织厂、造纸厂和一些生产车间无吸湿性性要求,主要回收显热时,应使 用显热回收器,表面无涂层。当排风温度 低于露点时,有吸湿可能,也回收潜热。体育馆、百货商店,工业通风系统2)转轮换热器的主要优缺点:优点缺点1.能回收显热和潜热1.装置较大,占用建筑面积和空间多2.排风与新风逆向交替过程中具有一定的自净作用2.接管位置固定,配管灵活性差3.通过转速控制,能适应不同的室内外空气参数3.有传动设备,自身需要消耗动力4.回收效率高,可达到7080%4.压力损失较大,易脏堵5.能应用于较高温度的排风系统5.有渗漏,

5、无法兀全避免交叉污染3)影响转轮换热器效率的因素:空气流速:空气流过转轮时的迎风面流速越大,效率越低,反之效率 则高,推荐风速24m/s。转轮两侧气流入口处,需要加装空气过滤器。设计时,必须计算校核转轮上是否会出现结霜、结冰现象;必要时应 在新风管上设空气预热器,或在热回收器后设温度自控装置,当温度达霜点,就 发出信号关闭新风阀门或开启预热器。d.由于全热交换器转轮需要动力,并且增加了阻力,从而增加输送动力和增加投资,因此,必须计算回收效应,当总能耗节约显著时,方可选用。 e.适用于排风不带有害物或有毒物质的场所。2.低温热管换热器1942年,美国工程师提出了热管原理,20世纪60年代初,开始

6、研 究和试制,最早被用于航天器与核反应堆,20世纪70年代,热管换热器作为全 新风系统中的热能回收装置而最终在暖通行业中体现出卓越的优越性。热管是靠 自身内部液体的相变来实现热量传递的传热元件,它有以下特点:每根热管都 是永久性密封的,传热时没有额外的能量损耗,无运行部件,运行可靠性高。 热管换热器的结构决定了它是典型的逆流换热,热管又几乎是等温运行,因此热 管换热器具有很高的效率。因冷热气体的换热在热管的外表面进行容易扩展受 热面积。冷热气体中间用隔板隔开,没有泄漏,因此没有交叉污染问题。由 于流体流动通道宽敞,阻力损失小。每根热管完全独立,维修方便。从环境 的适应性,余热回收效率、压力损失

7、、防止堵塞、清洗、寿命等综合指标看,热 管换热器占据优势。工作原理:热管由管壳、吸液芯和端盖组成,在抽成真空的管子里充以适当的 工作液,再将其两端密封。热管既是蒸发器又是冷凝器。热流吸热的一端是蒸发 段,工质吸收热后蒸发汽化,流动至另一端即冷凝段放热液化,并依靠毛细力作 用流回蒸发段,自动完成循环。热管换热器由单根热管集装在一起,中间用隔板将蒸发段与冷凝段分开,热管换 热器靠热管内工质的相变完成热量传递。每一根热管就是一个无动力的制冷循环 系统,传热速度是相同金属的数千倍至万倍,0.1C的温差即有热响应,它最初 用于人造卫星上解决向阳面和背阴面的受热不均匀,是人造卫星上必备设备之 一。现在,越

8、来越广泛的用于空气调节和余热回收领域,日本早稻田大学的一位 专家说:“日本特别重视节能和环保,而热管技术以其高效的传热性,为节能环 保找到了一条新路”。热管换热器在暖通空调设计手册中均有介绍和选用方法。1)低温热管换热器的主要优缺点:优点缺点1.结构紧凑,单位体积的传热面积大1.只能回收显热,不能回收潜热2.没有转动部件,不额外消耗能源2.接管位置固定,缺管配管的灵活性3.每根热管自成换热体系,不易脏堵,便于更换4.热管的传热是可逆的,冷热流体可以 变换5.冷、热气流之间的温差较小时,也能得到一定的回收效率6.本身的温降很小,接近于等温运行,换热效率高,6070%7.使用寿命长,12年以上2)

9、设计注意事项:低温热管适用于温度-40C80C,全年可使用,回收冷量时,角度与热 量相反。迎面风速宜采用1.53.5 m/s。冷、热端之间的间隔板,采用双层结构,可杜绝因漏风而造成交叉污染。换热器可垂直或水平安装,既可以几个并联,也可以几个串联。当气流的含湿量较大时,(此时有潜热回收,可作为余量)应设计凝水排除装置。启动换热器时,应使冷、热气流同时流动,或使冷气流先流动,停止时, 应使冷、热气流同时停止,或先停止热气流。二、低温热管换热器节能与经济效益分析:按沈阳地区冬季室外-19C,室内20C计算如果排风量为30 000立方米/时, 能量损失为37万Kal/h,相当于0.7吨的锅炉每小时产生

10、的热量。热管换热器每 小时可回收的的热量按效率60%计算为22.2万Kal/h。1.板式热交换器的工作原理:利用特殊的纸质材料或铝泊装配成上下各层间隔而成的通道,进风通过单数层通 道,排风通过双数层通道,通过空气与层板的接触传递热量,送风与排风逆流时 效率最高,但逆流运动时,材料受力最大,容易吹破交换器,所以常采用叉流结 构,作成全热时,表面应涂上吸湿性材料。板式换热器的优缺点:优点缺点1.构造简单,运行安全1.设备体积较大,需占用较多建筑空间2.没有传动设备,不消耗电力2.易脏堵,不易清洗,阻力大。3.不需要中间热媒3.大风量时,选用有局限性4.设备费低板式换热器设计选用时应注意:仅适用一般

11、空调工程,当排风中含有有害成份时,不宜选用。因阻力损失较大,为了在过渡季节能利用新风,减少能耗,在换热器旁 应设计旁通风管,以便让新风从旁通通过。与换热器连接的风管和旁通风管上,必须安装密闭性较好的风阀。安装的位置应便于芯体更换本文来源:中国热回收网热管换热器应用技术点击次数:24更新时间:2012-11-29 13:17:00【打印此页】【关闭】热管换热器的核心元件是热管。热管是一种新型相变高效传热元件,其独特的传热特性引起了人们的极大 兴趣,应用领域从空间扩大到地面,从工业扩展到民用。然而,在热管技术蓬勃发展的今天,其在工业应用中仍 然存在一些问题,会限制热管技术的使用和深入发展。笔者对这

12、些问题进行了研究,并提出了合理的解决办 法。1热管相容性早期的热管研究人员就注意到了管壳材料与工质的化学相容性问题,早期工业应用的热管一般采用铜材 管壁或钢铜复合管,产品成本很高,限制了热管技术在工业上的广泛应用。钢水热管以其成本低、强度高、制 造工艺简单及适应温度范围广得到了大家的认同,在工业上得到广泛的应用,然而钢水热管的使用寿命不足 0.5 a ,无法满足工业应用的要求。通过多年的研究人们认识到,钢水热管中存在着化学反应和电化学反应,这 是一种不可避免也不可能消除的金属腐蚀过程,只能抑制或延缓,因此,钢水热管相容性问题的对策只能是延 长热管的使用寿命。1.1腐蚀机理由于管材与工质的化学不

13、相容性,使得钢水热管内部发生腐蚀产生不凝气体氢气。氢气越多,换热效果 越不好,氢气积聚到一定程度可以使热管完全丧失传热功能。1.1.1 化学反应腐蚀热管长时间在较高的温度下工作,钢水会发生化学反应,在管内产生变化,其主要的化学反应过程如下:Fe +H2O = FeO+H2f2Fe+3H2O = Fe 2O3+3H2T3Fe+4H2O = Fe 3O4+4H2T上述反应的结果使管壁发生腐蚀,产生FeO、Fe2O3和Fe3O4,同时产生一定量的不凝气体氢气。除Fe3O4外,其余两种氧化层(FeO和Fe2O3 )不能阻止水的侵入,仍要与铁继续反应生成氢气。1.1.2电化学反应在钢水热管内,铁、杂质和

14、水构成一种原电池。其中铁为阳极,杂质为阴极。杂质一般为FeC3、石墨 等,为碳钢与水中所含。水的电离度虽小,但仍有少量的OH-和H+生成。管内主要的电化学反应过程如下:2H+2 e =H2fFe -2 e = Fe 2+Fe 2+2OH-=Fe(OH) 213Fe(OH) 2=Fe 3O4+2H2O + H2T在高温有水的条件下上述反应进行得很快,普遍认为这是导致碳钢与水不相容的主要原因。1.2对策1.2.1碳钢管材表面钝化高温蒸汽表面钝化 采用该办法的目的是使管壁净化且生成致密的兰色Fe 3O4氧化膜钝化层, 这是一种稳定性极好的保护膜。具体的做法是将净化后的碳钢管加热至500600C,然后

15、冲以水蒸气进行表 面钝化,此时碳钢管内表面会生成致密而均匀的Fe3O4氧化层。化学液钝化 该方法也是使管壁生成Fe3O4氧化膜钝化层,所不同的是采用氧化性化学试剂的 方法。目前钝化液主要采用的试剂是重铭酸钾,具体做法是将酸洗净化后的碳钢管放入钝化槽内,在一定温度 下浸泡一定的时间,使管壁内生成一层致密的Fe3O4氧化膜。1.2.2工质内添加缓蚀剂在工质中添加缓蚀剂是为了使管壁表面产生更为均匀与密集的Fe3O4钝化层。缓蚀剂与化学钝化一 般联合使用,由于制造工艺过程中不可避免会产生对局部钝化膜的破坏,这时缓蚀剂就可以起到修补的作用。 缓蚀剂品种很多,一般采用阳极型缓蚀剂,其管壁缓蚀效果较好。具体

16、做法是在工质内添加质量分数为1%3%的重铭酸钾。1.2.3排放法和渗透法在热管冷凝端部装上排气阀,必要时打开阀将积累的氢气排放出去。也可在热管冷凝端部装上钯管,让产 生的氢气随时渗透出去。1.2.4氧化除氢法根据化学理论,标准电极电位为正值的元素的氧化物都能被氢还原出来。常见的铜、镍、锌、钻等元素 的氧化物都能与氢进行氧化还原反应,只是要求的反应温度不同,反应速度不一样。氧化除氢技术在20世纪 90年代初就开始了推广应用,但要求的反应温度一般超过150C,使其在工业中的应用受到一定限制。目前, 一种新型高效复合配方的氧化除氢技术巳研制成功并进行了工业应用,在常温下就可快速地进行除氢反应。 这一

17、技术的推广应用,必将极大地提高热管的使用寿命。针对化学钝化膜不稳定、排放法和渗透法不易操作、高温蒸汽钝化所需场地设备及投资较大的问题,我 们认为最好的延长热管寿命的方法应为化学钝化、缓蚀剂及氧化除氢技术的配合使用。2热管积灰在热管余热回收设备中,热管积灰是普遍存在的问题,积灰增加了受热面热阻,降低了设备的传热能力,还 可以减少流体的通道面积,增加流动阻力,降低换热表面温度,造成低温露点腐蚀。不少的余热回收设备由于 积灰严重不能正常运行,甚至被迫停用,因此积灰巳成为节能设备能否正常运行的一个主要问题。2.1形成机理积灰按温度可划分为高温区积灰、过渡区积灰和低温区积灰,热管换热设备的积灰主要是低温

18、区积灰。 低温区积灰一般为疏松式积灰,主要发生在下游温度较低的换热设备上。积灰形成的机理较复杂,一般认为疏 松式积灰是由分子引力和静电引力的作用而形成。资料表明,当灰粒的当量直径小于3四m时,灰粒与金属管 壁间、灰粒与灰粒间的万有引力超过灰粒本身的重量,烟气中所含的微小灰粒冲刷到管壁时,就吸附在金属表 面或积灰表面上。另外,烟气流动时,因烟气中灰粒的电阻较大会发生静电感应,虽然受热面的材质是良导体, 但当受热面积灰后,其表面就变成了绝缘体,很容易将因静电感应而产生的带异种电荷的灰粒(当量直径小于10四m )吸附在其表面上,形成疏松式积灰。疏松式积灰在以下条件下均可形成低温粘结性积灰:燃料燃烧不

19、充分而形成高粘度聚合物,此种聚合 物极易吸附于管壁上,不容易脱落而形成粘结性积灰。当灰垢吸收烟气中的so 3和水蒸气后转化成硫酸 盐,形成粘结性积灰。2.2对策2.2.1热管管外翅片结构选择气相换热的热管换热器热管外都采用加肋强化传热,翅片形式多选用穿片或螺旋形缠绕片,这些翅片结 构紧凑,肋化比高,效果明显,但缺点是极易积灰结垢。对于高粉尘流体,即使翅片间距取1220mm,在某些情 况下也会出现严重积灰。对于高含尘流体,目前趋向于选择以下2种结构。轴对称单列纵向直肋翅片该翅片结构简单,制作方便,相对肋化比低,不易积灰。如果将翅片做成 不等高,即降低背后翅片高度,可进一步减少积灰。目前此结构的热

20、管换热器巳投入工业应用效果较好。钉头管钉头管作为换热设备的传热元件一般多用于粘结性积灰部位。例如,在燃油加热炉的对 流室中,为了减少热管换热器的积灰堵塞,将钉头管制成的热管空气预热器用于以高含硫油为燃料的常减压 加热炉中,投用多年无积灰堵塞现象。2.2.2流体速度及结构选择换热设备内流体速度是一个重要的设计参数,它影响换热设备的的传热、流动阻力、磨损及自清灰能力 等。目前设计热管换热设备时多采用等质量流速法,这种方法的严重不足之处就是随着设备内温度的下降, 进出口处的密度、动力粘度和导热系数明显变化,从而引起出口处流体的速度大幅下降,其结果是传热系数和 自清灰能力下降,造成换热设备后排的积灰。

21、可采用变截面设计法解决该问题,以等体积流速法代替等质量流 速法。对于某一参数一定的换热设备,质量流量是一个常数,如要维持体积流速不变,只有改变换热面积来抵 消密度的变化。随着烟气温度的降低,密度将增大,要维持流速一定,换热设备的流通面积将减小,所以以等体 积流速设计的换热设备的截面为一等边梯形。变截面换热设备的进、出口具有相同的自清灰能力,一般认为,换热设备内介质的实际流速达到8m/ s便 可起到自清灰的作用,设计时可取流体流速为812m/s。对于可能引起严重磨损的部位,流体流速可取68 m/ s,以免引起管子快速磨损而导致穿孔。2.2.3清灰采用化学清灰剂清灰或采用吹扫和用机械方法清除管子表面积灰3。这两种方法是在积灰生成以后才 进行,有滞后性。3热管露点腐蚀3.1产生机理当热管

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论