




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,ABC是ABC以点O为位似中心经过位似变换得到的,若ABC的面积与ABC的面积比是4:9,则OB:OB为()A2:3B3:2C4:5D4:923的绝对值是()A3B3C-D3如图,五边形ABCDE中,ABCD,1、2、3分别是BAE、
2、AED、EDC的外角,则1+2+3等于A90B180C210D2704sin60的倒数为( )A2BCD5在实数,中,其中最小的实数是()ABCD6我们从不同的方向观察同一物体时,可能看到不同的图形,则从正面、左面、上面观察都不可能看到矩形的是()ABCD7如图,在ABC中,C90,将ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MNAB,MC6,NC,则四边形MABN的面积是( )ABCD8如图,在矩形ABCD中,AB=2,BC=1若点E是边CD的中点,连接AE,过点B作BFAE交AE于点F,则BF的长为()ABCD9已知一次函数y=axxa+1(a为常数),则其函数图象一定过
3、象限()A一、二B二、三C三、四D一、四10如图所示是放置在正方形网格中的一个 ,则的值为( )ABCD11下列解方程去分母正确的是( )A由x3-1=1-x2,得2x133xB由x-22-x4=-1,得2x2x4C由y3-1=y5,得2y-15=3yD由y+12=y3+1,得3(y+1)2y+612某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为( )A+18B18C+18D18二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,AB是半圆O的直径,
4、E是半圆上一点,且OEAB,点C为的中点,则A=_.14若关于x的不等式组恰有3个整数解,则字母a的取值范围是_15若正多边形的一个内角等于140,则这个正多边形的边数是_. 16地球上的海洋面积约为361000000km1,则科学记数法可表示为_km117如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D当ODAD3时,这两个二次函数的最大值之和等于_18如图,在四边形中,点从点出发以的速度向点运动,点从点出发以的速度向点运动,、两点同时出发
5、,其中一点到达终点时另一点也停止运动若,当_时,是等腰三角形三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,O的直径DF与弦AB交于点E,C为O外一点,CBAB,G是直线CD上一点,ADGABD求证:ADCEDEDF;说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路过程写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列、中选取一个补充或更换已知条件,完成你的证明CDBCEB;ADEC;DECADF,且CDE9020(6分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出
6、100件后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元21(6分)已知:如图,ABAC,点D是BC的中点,AB平分DAE,AEBE,垂足为E求证:ADAE22(8分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形如图1,四边形ABCD中,点E,F,G,H分别为边AB
7、,BC,CD,DA的中点求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,APB=CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使APB=CPD=90,其他条件不变,直接写出中点四边形EFGH的形状(不必证明)23(8分)小明对,四个中小型超市的女工人数进行了统计,并绘制了下面的统计图表,已知超市有女工20人.所有超市女工占比统计表超市女工人数占比62.5%62.5%50%75%超市共有员工多少人?超市有女工多少人?若从这些女工中随机选出一个,求正好是超市的
8、概率;现在超市又招进男、女员工各1人,超市女工占比还是75%吗?甲同学认为是,乙同学认为不是.你认为谁说的对,并说明理由.24(10分)如图1,反比例函数(x0)的图象经过点A(,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,BAC75,ADy轴,垂足为D(1)求k的值;(2)求tanDAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线lx轴,与AC相交于点N,连接CM,求CMN面积的最大值25(10分)如图,一次函数y1kxb(k0)和反比例函数y2(m0)的图象交于点A(1,6),B(a,2)求一次函数与反比例函数的
9、解析式;根据图象直接写出y1y2 时,x的取值范围26(12分)观察规律并填空._(用含n的代数式表示,n 是正整数,且 n 2)27(12分)如图,在ABC中,ACB=90,O是AB上一点,以OA为半径的O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F(1)求证:AE=AF;(2)若DE=3,sinBDE=,求AC的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】根据位似的性质得ABCABC,再根据相似三角形的性质进行求解即可得.【详解】由位似变换的性质可知,ABAB,ACAC,ABCABC
10、,ABC与ABC的面积的比4:9,ABC与ABC的相似比为2:3, ,故选A【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心2、B【解析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1故选B【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.3、B【解析】试题分析:如图,如图,过点E作EFAB,ABCD,EFABCD,1=4,3=5,1+2+3=2+4+5=180,故选B4、D【解析】分析:根据乘积为1的两个数互为倒数,
11、求出它的倒数即可.详解:的倒数是.故选D.点睛:考查特殊角的三角函数和倒数的定义,熟记特殊角的三角函数值是解题的关键.5、B【解析】由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解【详解】解:0,-2,1,中,-201,其中最小的实数为-2;故选:B【点睛】本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小6、C【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到矩形的图形【详解】A、主视图为长方形,左视图为长方形,俯视图为
12、圆,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;C、主视图为等腰梯形,左视图为等腰梯形,俯视图为圆环,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误故选C【点睛】本题重点考查了三视图的定义考查学生的空间想象能力,关键是根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答7、C【解析】连接CD,交MN于E,将ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,MNCD,且CE=DECD=2CEMNAB,CDABCMNCAB在CMN中,C=90,MC=6,
13、NC=,故选C8、B【解析】根据SABE=S矩形ABCD=1=AEBF,先求出AE,再求出BF即可【详解】如图,连接BE四边形ABCD是矩形,AB=CD=2,BC=AD=1,D=90,在RtADE中,AE=,SABE=S矩形ABCD=1=AEBF,BF=故选:B【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型9、D【解析】分析:根据一次函数的图形与性质,由一次函数y=kx+b的系数k和b的符号,判断所过的象限即可.详解:y=axxa+1(a为常数),y=(a-1)x-(a-1)当a-10时,即a1
14、,此时函数的图像过一三四象限;当a-10时,即a1,此时函数的图像过一二四象限.故其函数的图像一定过一四象限.故选D.点睛:此题主要考查了一次函数的图像与性质,利用一次函数的图像与性质的关系判断即可.一次函数y=kx+b(k0,k、b为常数)的图像与性质:当k0,b0时,图像过一二三象限,y随x增大而增大;当k0,b0时,图像过一三四象限,y随x增大而增大;当k0,b0时,图像过一二四象限,y随x增大而减小;当k0,b0,图像过二三四象限,y随x增大而减小.10、D【解析】首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案【详解】解:过点A向CB引垂线,与
15、CB交于D,ABD是直角三角形, BD=4,AD=2,tanABC= 故选:D【点睛】此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做A的正切,记作tanA11、D【解析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可【详解】A由x3-1=1-x2,得:2x633x,此选项错误;B由x-22-x4=-1,得:2x4x4,此选项错误;C由y3-1=y5,得:5y153y,此选项错误;D由y+12=y3+1,得:3( y+1)2y+6,此选项正确故选D【点睛】本题考查了解一元一次方程,注意
16、在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号12、B【解析】根据前后的时间和是18天,可以列出方程.【详解】若设原来每天生产自行车x辆,根据前后的时间和是18天,可以列出方程.故选B【点睛】本题考核知识点:分式方程的应用. 解题关键点:根据时间关系,列出分式方程.二、填空题:(本大题共6个小题,每小题4分,共24分)13、22.5【解析】连接半径OC,先根据点C为的中点,得BOC=45,再由同圆的半径相等和等腰三角形的性质得:A=ACO=45,可得结论【详解】连接OC,OEAB,EOB=90,点C为的中点,BOC=45
17、,OA=OC,A=ACO=45=22.5,故答案为:22.5【点睛】本题考查了圆周角定理与等腰三角形的性质解题的关键是注意掌握数形结合思想的应用14、2a1【解析】先确定不等式组的整数解,再求出a的范围即可【详解】关于x的不等式组恰有3个整数解,整数解为1,0,1,2a1,故答案为:2a1【点睛】本题考查了一元一次不等式组的整数解的应用,能根据已知不等式组的解集和整数解确定a的取值范围是解此题的关键15、1【解析】试题分析:此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数首先根据求出外角度数,再利用外角和定理求出边数正多边形的一个内角是140
18、,它的外角是:180-140=40,36040=1故答案为1考点:多边形内角与外角16、3.612【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】将361 000 000用科学记数法表示为3.612故答案为3.61217、【解析】此题考查了二次函数的最值,勾股定理,等腰三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题【详解】过B作BFOA于F,过D作DEOA于E,过C作CMOA于M,则BF+CM是这两
19、个二次函数的最大值之和,BFDECM,求出AE=OE=2,DE= ,设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出OBFODE,ACMADE,得出= ,代入求出BF和CM,相加即可求出答案过B作BFOA于F,过D作DEOA于E,过C作CMOA于M,BFOA,DEOA,CMOA,BFDECMOD=AD=3,DEOA,OE=EA= OA=2,由勾股定理得:DE= =5,设P(2x,0),根据二次函数的对称性得出OF=PF=x,BFDECM,OBFODE,ACMADE,AM=PM= (OA-OP)= (4-2x)=2-x,即,解得:BF+CM= 故答案为【点睛】考核知识点:二次函数综
20、合题熟记性质,数形结合是关键.18、或【解析】根据题意,用时间t表示出DQ和PC,然后根据等腰三角形腰的情况分类讨论,当时,画出对应的图形,可知点在的垂直平分线上,QE=,AE=BP,列出方程即可求出t;当时,过点作于,根据勾股定理求出PQ,然后列出方程即可求出t【详解】解:由运动知,是等腰三角形,且,当时,过点P作PEAD于点E点在的垂直平分线上, QE=,AE=BP,当时,如图,过点作于,四边形是矩形,在中,点在边上,不和重合,此种情况符合题意,即或时,是等腰三角形故答案为:或【点睛】此题考查的是等腰三角形的定义和动点问题,掌握等腰三角形的定义和分类讨论的数学思想是解决此题的关键三、解答题
21、:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1)见解析;(2)见解析.【解析】连接AF,由直径所对的圆周角是直角、同弧所对的圆周角相等的性质,证得直线CD是O的切线,若证ADCEDEDF,只要征得ADFDEC即可在第一问中只能证得EDCDAF90,所以在第二问中只要证得DECADF即可解答此题【详解】(1)连接AF,DF是O的直径,DAF90,F+ADF90,FABD,ADGABD,FADG,ADF+ADG90直线CD是O的切线EDC90,EDCDAF90;(2)选取完成证明直线CD是O的切线,CDBACDBCEB,ACEBADECDECADFEDCDAF9
22、0,ADFDECAD:DEDF:ECADCEDEDF【点睛】此题考查了切线的性质与判定、弦切角定理、相似三角形的判定与性质等知识注意乘积的形式可以转化为比例的形式,通过证明三角形相似得出还要注意构造直径所对的圆周角是圆中的常见辅助线20、(1)一天可获利润2000元;(2)每件商品应降价2元或8元;当2x8时,商店所获利润不少于2160元【解析】:(1)原来一天可获利:20100=2000元;(2)y=(20-x)(100+10 x)=-10(x2-10 x-200),由-10(x2-10 x-200)=2160,解得:x1=2,x2=8,每件商品应降价2或8元;观察图像可得21、见解析【解析
23、】试题分析:证明简单的线段相等,可证线段所在的三角形全等,结合本题,证ADBAEB即可试题解析:AB=AC,点D是BC的中点,ADBC,ADB=90.AEEB,E=ADB=90.AB平分DAE,BAD=BAE.在ADB和AEB中,E=ADB,BAD=BAE,AB=AB,ADBAEB(AAS),AD=AE.22、(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.【解析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EHFG,EH=FG即可(2)四边形EFGH是菱形先证明APCBPD,得到AC=BD,再证明EF=FG即可(3)四边形EFGH是正方形,只
24、要证明EHG=90,利用APCBPD,得ACP=BDP,即可证明COD=CPD=90,再根据平行线的性质即可证明【详解】(1)证明:如图1中,连接BD点E,H分别为边AB,DA的中点,EHBD,EH=BD,点F,G分别为边BC,CD的中点,FGBD,FG=BD,EHFG,EH=GF,中点四边形EFGH是平行四边形(2)四边形EFGH是菱形证明:如图2中,连接AC,BDAPB=CPD,APB+APD=CPD+APD,即APC=BPD,在APC和BPD中,AP=PB,APC=BPD,PC=PD,APCBPD,AC=BD点E,F,G分别为边AB,BC,CD的中点,EF=AC,FG=BD,四边形EFG
25、H是平行四边形,四边形EFGH是菱形(3)四边形EFGH是正方形证明:如图2中,设AC与BD交于点OAC与PD交于点M,AC与EH交于点NAPCBPD,ACP=BDP,DMO=CMP,COD=CPD=90,EHBD,ACHG,EHG=ENO=BOC=DOC=90,四边形EFGH是菱形,四边形EFGH是正方形考点:平行四边形的判定与性质;中点四边形23、(1)32(人),25(人);(2);(3)乙同学,见解析.【解析】(1)用A超市有女工人数除以女工人数占比,可求A超市共有员工多少人;先求出D超市女工所占圆心角度数,进一步得到四个中小型超市的女工人数比,从而求得B超市有女工多少人;(2)先求出
26、C超市有女工人数,进一步得到四个中小型超市共有女工人数,再根据概率的定义即可求解;(3)先求出D超市有女工人数、共有员工多少人,再得到D超市又招进男、女员工各1人,D超市有女工人数、共有员工多少人,再根据概率的定义即可求解【详解】解:(1)A超市共有员工:2062.532(人),3608010012060,四个超市女工人数的比为:80:100:120:604:5:6:3,B超市有女工:2025(人);(2)C超市有女工:2030(人)四个超市共有女工:2090(人)从这些女工中随机选出一个,正好是C超市的概率为 (3)乙同学.理由:D超市有女工2015(人),共有员工1575%20(人),再招
27、进男、女员工各1人,共有员工22人,其中女工是16人,女工占比为75【点睛】本题考查了统计表与扇形统计图的综合,以及概率的知识用到的知识点为:概率=所求情况数与总情况数之比24、(1);(2),;(3)【解析】试题分析:(1)根据反比例函数图象上点的坐标特征易得k=2;(2)作BHAD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,2),则AH=21,BH=21,可判断ABH为等腰直角三角形,所以BAH=45,得到DAC=BACBAH=30,根据特殊角的三角函数值得tanDAC=;由于ADy轴,则OD=1,AD=2,然后在RtOAD中利用正切的定义可计算出CD=2,易得C点坐
28、标为(0,1),于是可根据待定系数法求出直线AC的解析式为y=x1;(3)利用M点在反比例函数图象上,可设M点坐标为(t,)(0t2),由于直线lx轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(t, t1),则MN=t+1,根据三角形面积公式得到SCMN=t(t+1),再进行配方得到S=(t)2+(0t2),最后根据二次函数的最值问题求解试题解析:(1)把A(2,1)代入y=,得k=21=2;(2)作BHAD于H,如图1,把B(1,a)代入反比例函数解析式y=,得a=2,B点坐标为(1,2),AH=21,BH=21,ABH为等腰直角三角形,BAH=45,BAC=75,DAC=BACBAH=30,tanDAC=tan30=;ADy轴,OD=1,AD=2,tanDAC=,CD=2,OC=1,C点坐标为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校特色部管理制度
- 学校饮水机管理制度
- 学生科内勤管理制度
- 安全不放心管理制度
- 安全绩效奖管理制度
- 安检运营与管理制度
- 安装科安全管理制度
- 定制品定价管理制度
- 实行周计划管理制度
- 宠物驴日常管理制度
- 《幼儿生活活动保育》课程标准
- 上海市2023年初中毕业物理课程终结性评价指南
- 中国教师发展基金会国家教师科研基金规划全国重点课题实施指南
- (通桥【2018】8370)《铁路桥梁快速更换型伸缩缝安装图》
- “双减”背景下的初中数学课堂教学设计与思考 论文
- 工程项目管理对应丁士昭教材
- 义务教育语文课程标准(2022)测试题带答案(20套)
- (医院护理论文)护理本科生学习适应现状及影响分析
- 保护性约束完整版
- 明源地产erp3.04-费用管理操作手册
- 储气库地面工程建设技术发展及建议
评论
0/150
提交评论