




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第 PAGE251 页1.1 不等关系教学目的与要求: 理解不等式的概念,感受生活中存在的不等关系教学重点与难点:重点: 对不等式概念的理解难点:怎样建立量与量之间的不等关系。从问题中来,到问题中去。如图1-1,用用根长度均为l的绳子,分别围成一个正方形与圆。(1)如果要使正方形的面积不大于252,那么绳长l应满足怎样的关系式?(2)如果要使圆的面积大于1002,那么绳长l应满足怎样的关系式?(3)当l=8时,正方形与圆的面积哪个大?l=12呢?(4)改变l的取值再试一试,在这个过程中你能得到什么启发?分析解答:在上面的问题中,所围成的正方形的面积可以表示为,圆的面积可以表示为。要使正方形的面
2、积不大于252,就是,即。要使圆的面积大于1002,就是100,即 100当l=8时,正方形的面积为,圆的面积为,45.1,此时圆的面积大。当l=12时,正方形的面积为,圆的面积为, 911.5,此时还是圆的面积大。不论怎样改变l的取值,通过计算发现:总是圆的面积大,因此,我们可以猜想,用长度增色为l的两根绳子分别围成一个正方形与圆,无论l取何值,圆的面积总大于正方形的面积,即(1)通过测量一棵树的树围(树干的周长)可能计算出它的树龄,通常规定以树干离地面1.5m的地方作为测量部位。某树栽种时的树围为5,以后树围每年增加约3,这棵树至少要生长多少年其树围才能超过2.4m?(只列关系式)(2)燃
3、放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10m以外的安全区域。已知导火线的燃烧速度为0.2m/s,人离开的速度为4m/s,导火线的长度x(m)应满足怎样的关系式?答案:(1)设这棵树生长x年其树围才能超过2.4m,则5+3x240。(2)人离开10m以外的地方需要的时间,应小于导火线燃烧的时间,只有这样才能保证人的安全:分析巩固练习:用不等式表示:a的相反数是正数;m与2的差小于;x的与4的与不是正数;y的一半与x的2倍的与不小于3。解答:(1)a的相反数是-a,正数是比零大的数,所以“a的相反数是正数”就是-a0;(2)“m与2的差”就是m-2,“差小于”即是m-2;(
4、3)“x的”就是x,“x的与4的与不是正数”就是x+40;(4)“y的一半”不是y,“x的2倍”就是2x,“不小于3”即指大于或等于3,故“y的一半与x的2倍的与不小于”就是y+2x3。下列各数:,-4,0,5.2,3其中使不等式1,成立是 ( )A-4,5.2 B,5.2,3 C,0,3 D,5.2答案:D有理数a,b在数轴上的位置如图1-2所示,所的值 ( )A0 B0 C0 D0答案:B 小结提问,快速回答:表示不等式关系的符号有哪些用适当的符号表示下列关系:(1)x的5倍与3的差比x的4倍大;(2)a的的相反数是非负数;(3)x的3倍不小于y的8倍。 下列不等式中,总能成立的是 ( )
5、A0 B C2aa Da作业要求:作业本教学反思:1.2不等式的基本性质一、教学目标1经历不等式基本性质的探索过程,初步体会不等式与等式的异同。2掌握不等式的基本性质。二、教学重难点不等式的基本性质的掌握与应用。三、教学过程设计1.比较归纳,产生新知我们知道,在等式的两边都加上或都减去同一个数或整式,等式不变。请问:如果在不等式的两边都加上或都减去同一个整式,那么结果会怎样?请兴几例试一试,并与同伴交流。类比等式的基本性质得出猜想:不等式的结果不变。试举几例验证猜想。如37,3+1=4,7+1=8,48,所以3+17+1;3-5=-2,7-5=2,-22,所以 3-57-5;3+a7+a;37
6、,3-a7-a等。都能说明猜想的正确性。2.探索交流,概括性质完成下列填空。23,25 35;23,2(-1) 3(-1);23,2(-5) 3(-5);你发现了什么?请再举几例试试,与同伴交流。通过计算结果不难发现:前两个空填“”,后三个空填“”。得出不等式的基本性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。(通过自我探索与具体的例子使学生加深对不等式性质的印象)3.练习巩固,促进迁移1 (1)用“”
7、号或“”号填空,并简说理由。 6+2 -3+2; 6(-2) -3(-2); 62 -32; 6(-2) -3(-2)(2)如果ab,则2利用不等式的基本性质,填“”或“”:(1)若ab,则2a+1 2b+1;(2)若10,则y -8;(3)若ab,且c0,则ac+c bc+c;(4)若a0,b0, c0,(a-b)c 0。4.巩固应用,拓展研究.1. 按照下列条件,写出仍能成立的不等式,并说明根据。(1)ab两边都加上-4; (2)-3ab两边都除以-3;(3)a3b两边都乘以2; (4)a2b两边都加上c;2. 根据不等式的性质,把下列不等式化为xa或xa的形式(a为常数):5.课内深化,
8、提升能力比较下列各题两式的大小:6.回顾联系,形成结构想一想:本节课学了哪些知识?有哪些性质?在运用性质时应注意什么?(通过问题的回答,引导学生自主总结,把分散的知识系统化、结构化,形成知识网络,完善学生的认知结构,加深对所学知识的理解)7.课外作业与拓展课外作业:课本第9页“习题1.2” 教学反思:1.3不等式的解集一、教学目标1理解不等式解与解集的意义。2了解不等式解集的数轴表示。二、教学重难点重点是区分不等式解与解集的概念,难点是在数轴上表示不等式的解集。三、教学过程设计1.创设情景,导出问题 (课本问题)燃放某中礼花弹时,为了确保安全,人在点燃导火线后要在燃放前10m以外的安全区域。已
9、知导火线的燃烧速度为0.02m/s,人离开的速度为4m/s,那么导火线的长度应为多少厘米? (在建立不等式之前,先让学生分析清楚问题中量与量之间的关系:为了使人有足够的时间到达安全区域,导火线燃烧的时间应大于人到达安全区域的时间。) 设导火线的长度应为x cm ,根据题意,得 即x52.探索交流,得出概念 1想一想:(1)你能找出几个使不等式x5成立的x的值吗?(2)x5,6,8能使不等式x5成立吗?(字母可以表示任何数,但对于满足x5中的字母x,它能够取任意数吗?如果不能,它能取哪些数呢?启发学生动手验证、动脑思考,并从中初步体会不等式解的意义及不等式解与方程解的不同之处。)能使不等式成立得
10、未知数得值,叫做不等式的解。例如,6是不等式x5一个解,7,8,9,也是不等式x5的解。一个含有未知数的不等式的所有解,组成这个不等式的解集。例如不等式x-5-1的解集为x4;不等式x20的解集是所有非零实数。求不等式解集的过程叫做解不等式。2议一议:请你用自己的方式将不等式x5的解集与x-5-1的解集分别表示在数轴上,并与同伴交流。(引导学生回忆实数与数轴上点的对应关系,认识数轴上的点是有序的,实数是可以比较大小的,让学生用具体实数对应的点加以说明)3.练习巩固,促进迁移1.判断下列说法是否正确:(1)x=2是不等式x+34的解;(2)x=2是不等式3x7的解集;(3)不等式3x7的解是x=
11、2;(4)x=3是不等式3x9的解。答案:(1)不正确; (2)不正确; (3)不正确; (4)正确。2.在数轴上表示出下列不等式的解集:(1)x-1; (2)x-1;(3)x-1; (4)x-1答案: (1)数轴上实心与空心的区别在于:空心点表示解集不包括这一点,实心点表示解集包括这一点。 (2)数轴上表示不等式的解集遵循“大于向右走,小于向左走”这一原则。4.回顾联系,形成结构想一想:本节课学了哪些知识?在运用时应注意什么?(通过问题的回答,引导学生自主总结,把分散的知识系统化、结构化,形成知识网络,完善学生的认知结构,加深对所学知识的理解)5.课外作业与拓展课外作业:课本第12页“习题1
12、.3” 教学反思:1.4一元一次不等式(1)教学目的与要求:会用一元一次不等式,并能在数轴上表示其解集。教学重点与难点:重点:一元一次不等式的解法难点:解决一元一次不等式时等号方向的改变。教学过程:观察下列不等式:(1); (2) (3)x4 (4)240这些不等式有哪些共同特点? 这些等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,象这样的不等式,叫做一元一次不等式。先阅读每(1)题的解法,然后仿做第(2)题,最后谈谈自己读题、做题的体会。(1)解不等式,并把它的解集表示在数轴上。解 去分母,得 去括号,得 移项、合并同类项,得 两边都除以5,得 这个不等式的解集在数轴上
13、表示如下(图1-13)(2)解不等式,并把它的解集表示的数轴上。答案:其解集在数轴上表示如下图1-40解不等式,并把它的解集在数轴上表示出来。解答:去括号,得,移项,得。合并同类项,得 24系数化为1,得。得。在数轴上表示不等式解集如图解不等式,并把它的解集在数轴上表示出来。解答:去分母,得答案:这个不等式的解集数轴上表示如图y取何正整数时,代数式2(y-1)的值不大于10-4(y-3)的值。解答:根据题意列出不等式:答案:解这个不等式,得,解集中的正整数解是:1,2,3,4。解关于x的不等式: k(x+3)x+4;解答:去括号,得kx+3kx+4;答案:若k-1=0,即k=1时,01不成立,
14、不等式无解。若k-10,即k1时,。若k-10,即k1时,。m取何值时,关于x的方程的解大于1。解答:解这个方程:根据题意,得 解得 m2是否存在整数m,使关于x的不等式与是同解不等式?如果存在,求出整数m与不等式的解集;如果不存在,请说明理由。答案:x-8因此,存在符合题意的m,当m=-11时,两个不等式同解,解集为x-8。小结:本节课我们学了什么?作业布置教学反思:一元一次不等式(2)目的、要求:加强巩固一元一次不等式的解法及用数轴表示不等式的解集了解不等式在生活中的应用重点、难点:有分母的一元一次不等式的解法 一元一次不等式的特殊解的求法以及一元一次不等式的应用例。解下列不等式。并把它们
15、的解集s在数轴上表示出来解:在不等式的两边同时解乘以8得;即化简得;例一教师师范板演。其他学生模仿联系解下列不等式并把它们的解集在数轴上表示出来例3、一次环保知识竞赛,共有25道题,规定答对一题得4分,答错一或不答扣一分。 eq oac(,1)小明得了85分,他答对了多少题? eq oac(,2)小立在这次竞赛中被评为优秀(85分或85分以上),小立可能答对了多少题?她至少答对了多少题?解: eq oac(,1)设小明答对了x道题,那么答错或不答(25-x)道题。根据题意、得4x-(25-x)=85解这个方程、得x=22所以小明答对了22道题。 eq oac(,2)设小立可能答对了x道题,那么
16、答错或不答(25-x)道题。根据提意,得4x-(25-x)=85解这个不等式,得x=22因为x答对题的个数,所以取不等式的正整数解,又只有25道题,因此小立可能答对了22,23,24,25道题。她至少答对了22道题。说明:第一小题是列一元一次方程解应用题,第二小题是列一元一次不等式解应用题,目的是让学生认识两者的区别与联系。二、出示投影片2:例四、小颖准备用21元钱买笔与笔记本。已知每支笔3元,每个笔记本2.2元,她买了2个笔记本,请你帮她算一算她还可能买几支笔。解:设小颖还可能买n支笔。根据题意,得3n+2.221解这个不等式,得n16.63因为n表示笔的支数,所以应取不等式的正整数解。因此
17、小颖还可能买1支,2支,3支,4支或5支笔。三、让学生交流对列不等式解应用题的认识,归纳列不等式解应用题的基本步骤。四、做17页随堂练习第二题五、课下作业,习题1.5,1题,2题六、课后小结;列不等式解应用题的一般步骤:1、分析题意,清楚已知量与未知量之间的关系,找到题中适当的不等关系。2、正确的设未知数,根据不等关系列出不等式。3、解不等式。4、在不等式的解集中选取符合题意的解。5、做出正确的结论。随堂练习作业布置教学反思:1.5一元一次不等式与一次函数一、教学目标1.通过作函数图象、观察函数图象,进一步理解函数的概念,并从中初步体会一元一次不等式与一次函数的内在联系。2.通过具体问题初步体
18、会一次函数的变化规律与一元一次不等式的解集的联系。3.感知不等式、函数、方程的不同作用与内在联系。二、教学重难点教学重点初步建立“数”(一元一次不等式)与“形”(一次函数)之间的关系,根据一次函数图象求一元一次不等式的解集。教学难点是理解一元一次不等式与一次函数的关系。三、教学过程设计1.创设情景,导出问题小明听了爸爸的字如其人的一番教诲,想到自己龙飞凤舞的“草书”作品连自己都认不出来的笑话,下决心练字,在第一周的前3天每天练字6页。设每周计划练字x页。你能写出x 与y 之间的关系式吗?这是一个什么函数?若周计划为y=38页,则x 取怎样的值,小明才能超额完成计划?(由实际问题出发引导学生回顾
19、一次函数相关概念以及一次函数与方程的关系。回顾所学知识作好新知识的衔接。)回顾:一次函数的定义。一次函数的图象。直线y=kx+b与方程的联系。2.探索交流,发现规律我们来看下面这个问题。作出函数y=2x-5的图象,观察图象回答下列问题:(1)、x取何值时,y=0?提示: 的值就是2x-5的值那么2x-5=0呢?(2)、x取何值时,y0?2x-50呢?(3)、x取何值时,y0?2x-53?2x-53呢?(展示问题,适当时间后请学生解答并说明理由,让学生尝试独立完成问题,并与全班同学交流解题方法,教师借助课件作结论性评判。以上问题可以直接解不等式(或方程)求解,但这里意图是让学生通过直接图象得到。
20、引导学生体会既可以运用函数图象解不等式,也可以运用解不等式帮助研究函数问题,二者互相渗透,互相作用。)想一想:如果y=-2x-5,那么当x取何值时,y0(将此结果与上面的例子进行比较,你发现了什么?在用一次函数图象解时应注意哪些问题?)(学生独立完成并与全班同学交流想法。学生可以用不同方法解答,教师意图是尽量用图象求解。)小结:一元一次不等式除了可以利用不等式的基本性质解之外,还可以用一次函数图象来解。只是第一、应先将一元一次不等式化成y0(或0,有怎样的情况?(kx+b中ky2,你是怎样做的?与同伴交流。(在学生思考后,用课件展示图象以便学生识图求解。学生采用不同方法完成,完成练习,巩固新知
21、识,并与同学交流。)(2)某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数图象关系如图所示。 求x30时,y与x之间的函数关系式; 如果某人4月份上网20小时,他应付多少元? 如果某人5月份上网的费用为75元,则他在该月上网多少时间? (此题摘自励耘精品系列丛书课时导航北师大版八年级(下)P9第8题)(让学生认真观察图象,分析图象,初步学会用分段函数的思想去考虑问题,初步建立“数”(一元一次不等式)与“形”(一次函数)之间的关系。使学生初步体会函数、方程、不等式都是刻画现实世界中量与量之间变化规律的重要模型,通过具体例子渗透三者之间的内在联系,帮助学生从整体上认识不等式,
22、感受函数、方程、不等式的作用。)5.回顾联系,形成结构通过本节课的学习,你有哪些收获?(学生小结,教师对学生小结内容作肯定或补充。通过学生自我总结使之进一步理解函数的概念,并从中初步体会一元一次不等式与一次函数的内在联系。通过具体问题初步体会一次函数的变化规律与一元一次不等式的解集的联系。使学生从整体上认识不等式,感受函数、方程、不等式的作用。)6.课外作业与拓展课外作业:课本第19页“读一读”、第20页“习题1.6” 课外拓展:参见励耘精品系列丛书课时导航北师大版八年级(下)P7P10教学反思:1.6 一元一次不等式组第一课时一、教学目标:1. 知识目标:理解一元一次不等式组解集的概念,掌握
23、一元一次不等式组的解法会利用数轴较简单的一元一次不等式组通过练习,理解并掌握一元一次不等式组解集的几种情况2. 能力目标:通过利用数轴来寻求不等式组的解,培养学生的观察能力、分析能力,让学生从练习中发现不等式组解集的四种情况,以培养学生归纳总结能力 3. 情感目标: 将不等式组的解法与归纳留给学生在交流、讨论中完成,培养学生养成良好的学习习惯与转变一种观念将教师与学习伙伴看成是自己有利的学习资源。二、教学重难点:教学重点:在紧密联系不等式的同时,理解不等式组解集的意义。教学难点:借助数形结合的方法找出不等式的解集。三、教学过程设计: 1.回顾旧知,探索发展回顾:解下列不等式,并把它的解集在数轴
24、上表示出来。 (1)2x+35 (2)6x51(让学生上台演示,注意指导其解题的规范性)探索:用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水在1200吨到1500吨之间,那么大约需要多长时间才能将污水抽完?分析:设需要x分钟才能将污水抽完,那么总的抽水量应为30 x吨。由题意,积存的污水在1200吨到1500吨之间,因此,应有120030 x1500(通过一个具体的问题引入一元一次式组的概念。学生在研究这一具体问题时,自然感知到要解决的问题同时满足两个约束条件,而这两个约束条件都是不等式。这样引入不等式组比较自然) 上式实际上包括了两个不等式 30 x1200 与 30
25、x1500它说明要这个实际问题中,未知量x应同时满足这两个条件。我们把这两个一元一次不等式合在一起,就得到一个一元一次不等式组:(你能尝试找出符合上面一元一次不等式组的未知数的值吗?与同伴交流。学生可以通过列表、画数轴图的方法,寻求不等式组的解。要让学生在充分交流的基础上体会寻找不等式的公共解的方法。) 分别求这两个不等式的解集,得 同时满足的未知数x应是个不等式的解集的公共部分。在数轴上表示出来 x应取 40 x50 这就是所列不等式组的解集。即答案为:大约需要40到50分钟才能将污水抽完。概括: 几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。解一元一次不等式组,其步骤通常为
26、: (1)先分别求出不等式组中的每一个不等式的解集; (2)在数轴上把它们的解集表示出来; (3)找出解集的公共部分,即不等式组的解集。2.练习巩固,促进迁移(1)例题:解不等式组解:解不等式,得 x2 解不等式,得 x4在数轴上表示出的解集原不等式组的解集为x4(要让学生认识到准确、熟练得解不等式是解不等式组的基础,而运用数轴表示(找公共部分)是关键。让学生再次体会数形结合思想的魅力。)(2)练习:(3)问题探讨:从练习的情况来看,请同学们认真观察它与下面几种图示的关系: 当不等号的方向一致时(称同向不等式),即:对这类不等式组可按“同大取大;同小取小”的法则,即取公共部分为它的解(如图)当
27、不等号的方向相反时(称异向不等式),即:则若未知数的取值比大数小,比小数大时,不等式组的解集在两数之间,取公共部分(如图); 若未知数的取值比大数还大,比小数还小,不等式组的解集是空集,即没有公共部分(如图3)(先让学生通过练习,从感性上了解不等式组解集的基本情况;其次引导学生通过“练习解答的形式与所给图示”的对比,引发出不等式组解集的四种基本情况;从而加深学生对不等式组解集的理解,更重要的是学生区分出这四种不同的情况后,在结合图形能更快更准地找出不等式组的解集。)3.巩固应用,拓展研究(1)找出下列不关x的公共部分。 (2)解不等式组(3)求不等式组的整数解 (巩固应用的设计突出一个层次性,
28、满足不同基础水平的同学的需要。其中第1题主要训练学生的定向思维,巩固不等式组解集的四种情况;第2题则是以训练学生解不等式组的方法。第3题则以发散思维为主,其目的是让优生吃得饱。在挑战难题的过程中,培养学生学习的意志力。)4.回顾联系,形成结构通过本节课的学习,你有哪些收获?(学生小结,教师对学生小结内容作肯定或补充。启发学生动脑思考、归纳、总结所学知识,从而培养学生简明的语言概括能力与准确的语言表达能力。通过学生自我总结使之进一步理解一元一次不等式组的概念,并从中初步体会一元一次不等式与一元一次不等式组的内在联系。促进学生对数学知识的记忆,并把所学知识结构化系统化。)5.课外作业与拓展课外作业
29、:课本第26页“习题1.8” 教学反思:第二课时一、教学目标:1、一元一次不等式组的解集的表示,尤其是在数轴上的表示让学生们必需掌握。2、让学生理解一元一次不等式组及其解的意义。利用不等式来解决实际问题,让学生进一步感受数形结合的作用。3、让学生经历具体具体问题抽象出不等式组的过程。二、教学重难点:教学重点:掌握一元一次不等式组的解法;会用数轴表示一元一次不等式组解集的几种情况教学难点:不等式组解集几种情况的灵活应用。三、教学过程设计:1.基础运用,例1. 解不等式组 ,并将解集标在数轴上. (解不等式组的基本思路是求组成这个不等式组的各个不等式的解集的公共部分,在解的过程中各个不等式彼此之间
30、无关系,是独立的,在每一个不等式的解集都求出之后,才从“组”的角度去求“组”的解集,在此可借助于数轴用数形结合的思想去分析与解决问题。) 步骤:解:解不等式(1)得x 解不等式(2)得x4 (利用数轴确定不等式组的解集) 原不等式组的解集为-1, 解不等式(2)得x1, 解不等式(3)得x2, 在数轴上表示出各个解为: 原不等式组解集为-14x-5得:x3,解不等式 1得x2, 原不等式组解集为x2,这个不等式组的正整数解为x=1或x=2 1、先求出不等式组的解集。2、在解集中找出它所要求的特殊解, 正整数解。 例4.m为何整数时,方程组 的解是非负数? (本题综合性较强,注意审题,理解方程组
31、解为非负数概念,即 。先解方程组用m的代数式表示x, y, 再运用“转化思想”,依据方程组的解集为非负数的条件列出不等式组寻求m的取值范围,最后切勿忘记确定m的整数值。 )解:解方程组得 方程组 的解是非负数, 即 解不等式组 此不等式组解集为 , 又m为整数,m=3或m=4。 例5.解不等式 0。 (由” “这部分可看成二个数的“商”此题转化为求商为负数的问题。两个数的商为负数,这两个数异号,进行分类讨论,可有两种情况。(1) 或(2) 因此,本题可转化为解两个不等式组。) 例6. 解不等式-33x-15。 解法(1):原不等式相当于不等式组 解不等式组得- x2,原不等式解集为- x2。
32、解法(2):将原不等式的两边与中间都加上1,得-23x6, 将这个不等式的两边与中间都除以3得, - x2, 原不等式解集为- xb,bc,那么a=c;(3)两角与其中一角的对边对应相等的两个三角形全等;(4)菱形的四条边都相等;(5)全等三角形的面积相等.生甲第一个命题的条件是:两个角相等,结论是:它们是对顶角.生乙第二个命题的条件是:ab,bc,结论是:a=c.生丙第三个命题的条件是:在两个三角形中,有两角与其中一角的对边对应相等.结论是:这两个三角形全等.生丁第四个命题的条件是:菱形的四条边.结论是:都相等.生戊丁同学说得不对.这个命题可改写为:如果一个四边形是菱形,那么这个四边形的四条
33、边都相等.显然,这个命题的条件是:一个四边形是菱形.结论是:这个四边形的四条边都相等.生己第五个命题可改写为:如果两个三角形全等,那么这两个三角形的面积相等.则这个命题的题设是:两个三角形全等.结论是:这两个三角形的面积相等.师同学们分析得很好.能够经过分析,准确地找出命题的条件与结论.接下来我们来思考(出示投影片6.2.2 B)2.上述命题中哪些是正确的?哪些是不正确的?你怎么知道它们是不正确的?师大家思考后,来分组讨论.生甲第三个、第四个、第五个命题是正确的.第一个、第二个命题是不正确的.生乙我们讨论的结果是与甲同学的一样.如图610,1=2,从图形中可知1与2不是对顶角.所以第一个命题:
34、如果两个角相等,那么它们是对顶角是错误的.生丙第二个命题中的a取6,b取3,c取2,这样可知:a与c是不相等的.所以第二个命题是不正确的.师很好.同学们不仅能区分命题的正确与否,还能举例说明命题的错误.真棒!我们把正确的命题称为真命题(true statement),不正确的命题称为假命题(false statement).由大家刚才分析可以知道:要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例(counter example).注意:对于假命题并不要求,在题设成立时,结论一定错误.事实上,只要你不能保证结论一定成立,这个命题就是假命题
35、了.因此,要说明一个命题是假命题,只要举出一个“反例”就可以了.那一个正确的命题如何证实呢?大家来想一想:(出示投影片6.2.2 C)如何证实一个命题是真命题呢?生甲用我们以前学过的观察、实验、验证特例等方法.生乙这些方法往往并不可靠.生丙能不能根据已经知道的真命题证实呢?生丁那已经知道的真命题又是如何证实的?生戊哦那可怎么办呢?师其实,在数学发展史上,数学家们也遇到过类似的问题,公元前3世纪,人们已经积累了大量的数学知识,在此基础上,古希腊数学家欧几里得(Euclid,公元前300前后)编写了一本书,书名叫原本(Elements),为了说明每一结论的正确性,他在编写这本书时进行了大胆创造:挑
36、选了一部分数学名词与一部分公认的真命题作为证实其他命题的起始依据.其中的数学名词称为原名,公认的真命题称为公理(axiom).除了公理外,其他真命题的正确性都通过推理的方法证实.推理的过程称为证明(proof).经过证明的真命题称为定理(theorem),而证明所需的定义、公理与其他定理都编写在要证明的这个定理的前面.原本问世之前,世界上还没有一本数学书籍像原本这样编排.因此,原本是一部具有划时代意义的著作.生教师,我知道了,除公理、定义外,其他的真命题必须通过证明才能证实.师对,我们这套教材有如下命题作为公理:(出示投影片6.2.2 D)1.两直线被第三条直线所截,如果同位角相等,那么这两条
37、直线平行.2.两条平行线被第三条直线所截,同位角相等.3.两边及其夹角对应相等的两个三角形全等.4.两角及其夹边对应相等的两个三角形全等.5.三边对应相等的两个三角形全等.6.全等三角形的对应边相等,对应角相等.师同学们来朗读一次.师好.除这些以外,等式的有关性质与不等式的有关性质都可以看作公理.在等式或不等式中,一个量可以用它的等量来代替.如:如果a=b,b=c,那么,a=c,这一性质也看做公理,称为“等量代换”.注意:(1)公理是通过长期实践反复验证过的,不需要再进行推理论证而都承认的真命题.(2)公理可以作为判定其他命题真假的根据.好,下面我们通过“读一读”来进一步了解原本这套书,进而了
38、解数学史.3.巩固应用,拓展研究(1)课本P185 读一读(2)看课本P181185,然后小结(3)将一个命题的条件与结论交换得到一个新命题,我们称这个命题为原命题的逆命题,请写出下列命题的逆命题,并判断是真命题还是假命题.凡直角都相等.对顶角相等.两直线平行,同位角相等.如果两数中有一个是正数,那么这两个数之与是正数.过程让学生充分考虑,使他们能分清命题的题设与结论.写出逆命题的关键是分清原命题的题设与结论,而判别真假则依赖于对知识的掌握.结果解:凡相等的角都是直.假命题相等的角是对顶角. 假命题同位角相等,两直线平行. 真命题如果两个数之与是正数,那么这两个数中必须有一个正数. 真命题4.
39、回顾联系,形成结构本节课我们主要研究了命题的组成及真假.知道任何一个命题都是由条件与结论两部分组成.命题分为真命题与假命题.在区分真假命题时.注意:假命题只需举一个反例即可.而真命题除公理与性质外,必须通过推理得证.大家要会灵活运用本节课谈到的公理来证明一些题.5.课外作业与拓展课外作业:课本P197 习题6.3 1、2 、3教学反思:6.3 为什么它们平行一、教学目标(一)教学知识点1.平行线的判定公理.2.平行线的判定定理.(二)能力训练要求1.通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力.2.理解与掌握平行线的判定公理及两个判定定理.3.掌握应用数学语言表示平行线的判定公理
40、及定理,逐步掌握规范的推理论证格式.(三)情感与价值观要求通过学生画图、讨论、推理等活动,给学生渗透化归思想与分类思想.二、教学重难点教学重点:平行线的判定定理、公理.教学难点:推理过程的规范化表达.三、教具准备投影片五张第一张:定理(记作投影片6.3 A)第二张:议一议(记作投影片6.3 B)第三张:定理(记作投影片6.3 C)第四张:想一想(记作投影片6.3 D)第五张:小结(记作投影片6.3 E)四、教学过程设计1.创设情景,引入新课师前面我们探索过直线平行的条件.大家来想一想:两条直线在什么情况下互相平行呢?生甲在同一平面内,不相交的两条直线就叫做平行线.生乙两条直线都与第三条直线平行
41、,则这两条直线互相平行.生丙同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.师很好.这些判定方法都是我们经过观察、操作、推理、交流等活动得到的.上节课我们谈到了要证实一个命题是真命题.除公理、定义外,其他真命题都需要通过推理的方法证实.我们知道:“在同一平面内,不相交的两条直线叫做平行线”是定义.“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”是公理.那其他的三个真命题如何证实呢?这节课我们就来探讨第三节:为什么它们平行.2.讲授新课师看命题(出示投影片6.3 A)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行师这是一个文字证明题,需要
42、先把命题的文字语言转化成几何图形与符号语言.所以根据题意,可以把这个文字证明题转化为下列形式:如图612,已知,1与2是直线a、b被直线c截出的同旁内角,且1与2互补,求证:ab.那如何证明这个题呢?我们来分析分析.师生共析要证明直线a与b平行,可以想到应用平行线的判定公理来证明.这时从图中可以知道:1与3是同位角,所以只需证明1=3,则a与b即平行.因为从图中可知2与3组成一个平角,即2+3=180,所以:3=1802.又因为已知条件中有2与1互补,即:2+1=180,所以1=1802,因此由等量代换可以知道:1=3.师好.下面我们来书写推理过程,大家口述,教师来书写.(在书写的同时说明:符
43、号“”读作“因为”,“”读作“所以”)证明:1与2互补(已知)1+2=180(互补的定义)1+2=1801=1802(等式的性质)3+2=180(1平角=180)3=1802(等式的性质)1=1802,3=18021=3(等量代换)1=3ab(同位角相等,两直线平行)这样我们经过推理的过程证明了一个命题是真命题,我们把这个真命题称为:直线平行的判定定理.这一定理可简单地写成:同旁内角互补,两直线平行.注意:(1)已给的公理,定义与已经证明的定理以后都可以作为依据.用来证明新定理.(2)方括号内的“1+2=180”等,就是上面刚刚得到的“1+2=180”,在这种情况下,方括号内的这一步可以省略.
44、(3)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是定义、公理,已经学过的定理.在初学证明时,要求把根据写在每一步推理后面的括号内.好,下面大家来议一议(出示投影片6.3 B)小明用下面的方法作出了平行线,你认为他的作法对吗?为什么?生我认为他的作法对.他的作法可用图614来表示:CFE=45,BEF=45.因为BEF与FEA组成一个平角,所以FEA=180BEF=18045=135.而CFE与FEA是同旁内角.且这两个角的与为180,因此可知:CDAB.师很好.从图中可知:CFE与FEB是内错角.因此可知:“内错角相等,两直线平行”是真命题.下面我们来用规范
45、的语言书写这个真命题的证明过程.师生共析已知,如图615,1与2是直线a、b被直线c截出的内错角,且1=2.求证:ab证明:1=2(已知)1+3=180(1平角=180)2+3=180(等量代换)2与3互补(互补的定义)ab(同旁内角互补,两直线平行).这样我们就又得到了直线平行的另一个判定定理:(出示投影片6.3 C)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.这一定理可以简单说成:内错角相等,两直线平行.师刚才我们是应用判定定理“同旁内角互补,两直线平行”来证明这一定理的.下面大家来想一想(出示投影片6.3 D)借助“同位角相等,两直线平行”这一公理,你还能证明哪些熟悉的
46、结论呢?生甲已知,如图616,直线ac,bc.求证:ab.证明:ac,bc(已知)1=902=90(垂直的定义)1=2(等量代换)ba(同位角相等,两直线平行)生乙由此可以得到:“如果两条直线都与第三条直线垂直,那么这两条直线平行”的结论.师同学们讨论得真棒.下面我们通过练习来熟悉掌握直线平行的判定定理.3.课堂练习(一)课本P200随堂练习1.蜂房的底部由三个全等的四边形围成,每个四边形的形状如图617所示,其中=10928,=7032,试确定这三个四边形的形状,并说明你的理由.解:这三个四边形的形状是平行四边形.理由是:=10928=7032(已知)+=180(等式的性质)ABCD,ADB
47、C(同旁内角互补,两直线平行)四边形ABCD是平行四边形(平行四边形的定义)(二)你能用圆规与直尺作出两条平行线吗?能证明你的作法吗?过程通过这个活动,一来复习用尺规作图,二来熟悉掌握证明的步骤.结果如图618所示.用圆规与直尺能作出两条平行线.因为在作图中,作=.而与是同位角.由“同位角相等,两直线平行”可知:ab.还可以作内错角,即:作一个角等于已知角,使所作的角与是内错角即可.4. 回顾联系,形成结构这节课我们主要探讨了平行线的判定定理的证明.同学们来归纳一下完成下表(出示投影片6.3 E)由角的大小关系来证两直线平行的方法,再一次表达了“数”与“形”的关系;而应用这些公理、定理时,必须
48、能在图形中准确地识别出有关的角.注意:1.证明语言的规范化.2.推理过程要有依据.3.“两条直线都与第三条直线平行,这两条直线互相平行”这个真命题以后证.5.课外作业与拓展课外作业:课本P201习题6.4 1、2 教学反思:6.4 如果两条直线平行一、教学目标(一)教学知识点1.平行线的性质定理的证明.2.证明的一般步骤.(二)能力训练要求1.经历探索平行线的性质定理的证明.培养学生的观察、分析与进行简单的逻辑推理能力.2.结合图形用符号语言来表示平行线的三条性质的条件与结论.并能总结归纳出证明的一般步骤.(三)情感与价值观要求通过师生的共同活动,培养学生的逻辑思维能力,熟悉综合法证明的格式.
49、进而激发学生学习的积极主动性.二、教学重难点教学难点:理解命题、分清其条件与结论.正确对照命题画出图形.写出已知、求证.三、教具准备投影片六张第一张:议一议(记作投影片6.4 A)第二张:想一想(记作投影片6.4 B)第三张:符号语言(记作投影片6.4 C)第四张:命题(记作投影片6.4 D)第五张:证明的一般步骤(记作投影片6.4 E)第六张:练习(记作投影片6.4 F)四、教学过程设计1.创设情景,引入新课师上节课我们通过推理得证了平行线的判定定理,知道它们的条件是角的大小关系.其结论是两直线平行.如果我们把平行线的判定定理的条件与结论互换之后得到的命题是真命题吗?这节课我们就来研究“如果
50、两条直线平行”.2.讲授新课师在前一节课中,我们知道:“两条平行线被第三条直线所截,同位角相等”这个真命题是公理,这一公理可以简单说成:两直线平行,同位角相等.下面大家来分组讨论(出示投影片6.4 A)议一议:利用这个公理,你能证明哪些熟悉的结论?生甲利用“两条直线平行,同位角相等”可以证明:两条直线平行,内错角相等.生乙还可以证明:两条直线平行,同旁内角互补.师很好.下面大家来想一想:(出示投影片6.4 B)(1)根据“两条平行线被第三条直线所截,内错角相等”.你能作出相关的图形吗?(2)你能根据所作的图形写出已知、求证吗?(3)你能说说证明的思路吗?生甲根据上述命题的文字叙述,可以作出相关
51、的图形.如图623.生乙因为“两条平行线被第三条直线所截,内错角相等”这个命题的条件是:两条平行线被第三条直线所截.它的结论是:内错角相等.所以我根据所作的图形.如图623,把这个文字命题改写为符号语言.即:已知,如图623,直线ab,1与2是直线a、b被直线c截出的内错角.求证:1=2.师乙同学叙述得很好.(出示投影片6.4 C)(投影片为上面的符号语言)你能说说证明的思路吗?生丙要证明内错角1=2,从图中知道1与3是对顶角.所以1=3,由此可知:只需证明2=3即可.而2与3是同位角.这样可根据平行线的性质公理得证.师丙同学的思路清楚.我们来根据他的思路书写证明过程.哪位同学上黑板来书写呢?
52、(学生举手,请一位同学来)生丁证明:ab(已知)3=2(两直线平行,同位角相等)1=3(对顶角相等)1=2(等量代换)师同学们写得很好.通过证明证实了这个命题是真命题,我们可以把它称为定理.即平行线的性质定理.这样就可以把它作为今后证明的依据.注意:(1)在课本P191中曾指出:随堂练习与习题中用黑体字给出的结论也可以作为今后证明的依据.所以像“对顶角相等”就可以直接应用.(2)这个性质定理的条件是:直线平行.结论是:角的关系.在应用时一定要注意.接下来我们来做一做由判定公理可以证明的另一命题(出示投影片6.4 D)两条平行线被第三条直线所截,同旁内角互补. 师来请一位同学上黑板来给大家板演,
53、其他同学写在练习本上.图624生甲已知,如图624,直线ab,1与2是直线a、b被直线c截出的同旁内角.求证:1+2=180.证明:ab(已知)3=2(两直线平行,同位角相等)1+3=180(1平角=180)1+2=180(等量代换)生乙教师,我写的已知、求证与甲同学的一样,但证明过程有一点不一样,他应用了直线平行的性质公理,我应用了直线平行的性质定理.(证明如下)证明:ab(已知)3=2(两直线平行,内错角相等)1+3=180(1平角=180)1+2=180(等量代换)师同学们证得很好,都能学以致用.通过推理的过程得证这个命题“两条平行线被第三条直线所截,同旁内角互补”是真命题.我们把它称为
54、定理,即直线平行的性质定理,以后可以直接应用它来证明其他的结论.到现在为止,我们通过推理得证了两个判定定理与两个性质定理,那么你能说说证明的一般步骤吗?大家分组讨论、归纳.师生共析好,我们来共同归纳一下(出示投影片6.4 E)证明的一般步骤:第一步:根据题意,画出图形.先根据命题的条件即已知事项,画出图形,再把命题的结论即求证的内容在图上标出符号,还要根据证明的需要在图上标出必要的字母或符号,以便于叙述或推理过程的表达.第二步:根据条件、结论,结合图形,写出已知、求证.把命题的条件化为几何符号的语言写在已知中,命题的结论转化为几何符号的语言写在求证中.第三步,经过分析,找出由已知推出求证的途径
55、,写出证明过程.一般情况下,分析的过程不要求写出来,有些题目中,已经画出了图形,写好了已知、求证,这时只要写出“证明”一项就可以了.师接下来我们来做一练习,以进一步巩固证明的过程.3.课堂练习(一)练习(出示投影片6.4 F)证明邻补角的平分线互相垂直.已知:如图625,AOB、BOC互为邻补角,OE平分AOB,OF平分BOC.求证:OEOF.证明:OE平分AOB.OF平分BOC(已知)EOB=AOBBOF=BOC(角平分线定义)AOB+BOC=180(1平角=180)EOB+BOF=(AOB+BOC)=90(等式的性质)即EOF=90OEOF(垂直的定义)(二)已知,如图627,ABCD,B
56、=D,求证:ADBC. 过程让学生在证明这个题时,可从多方面考虑,从而拓展了他们的思维,要证:ADBC,可根据平行线的五种判定方法,结合图形,可证同旁内角互补,内错角相等,同位角相等.结果证法一:ABDC(已知)B+C=180(两直线平行,同旁内角互补)B=D(已知)D+C=180(等量代换)ADBC(同旁内角互补,两直线平行)证法二:如图628,延长BA(构造一组同位角)ABCD(已知)1=D(两直线平行,内错角相等)B=D(已知)1=B(等量代换)ADBC(同位角相等,两直线平行)证法三:如图629,连接BD(构造一组内错角)ABCD(已知)1=4(两直线平行,内错角相等)B=D(已知)B
57、1=D4(等式的性质)2=3ADBC(内错角相等,两直线平行)4. 回顾联系,形成结构这节课我们主要研究了平行线的性质定理的证明,总结归纳了证明的一般步骤.1.平行线的性质:公理:两直线平行,同位角相等定理:两直线平行,内错角相等定理:两直线平行,同旁内角互补2.证明的一般步骤(1)根据题意,画出图形.(2)根据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程.5.课外作业与拓展课外作业:课本P204 习题6.5 1、2、3 教学反思:6.5 三角形内角与定理的证明一、教学目标(一)教学知识点三角形的内角与定理的证明.(二)能力训练要求掌握三角形内角
58、与定理,并初步学会利用辅助线证题,同时培养学生观察、猜想与论证能力.(三)情感与价值观要求通过新颖、有趣的实际问题,来激发学生的求知欲.二、教学重难点教学重点:三角形内角与定理的证明.教学难点:三角形内角与定理的证明方法.三、教具准备三角形纸片数张.投影片三张第一张:问题(记作投影片6.5 A)第二张:实验(记作投影片6.5 B)第三张:小明的想法(记作投影片6.5 C)四、教学过程设计1.创设情景,引入新课师大家来看一机器零件(出示投影片6.5 A)工人师傅将凹型零件(图634)加工成斜面EC与槽底CD成55的燕尾槽(图635)的程序是:将垂直的铣刀倾斜偏转35角(图65),就能得到55的燕
59、尾槽底角.为什么铣刀偏转35角,就能得到55的燕尾槽底角呢?2.讲授新课师为了回答这个问题,先观察如下的实验(电脑实验,或实物实验)用橡皮筋构成ABC,其中顶点B、C为定点,A为动点(如图637),放松橡皮筋后,点A自动收缩于BC上,请同学们考察点A变化时所形成的一系列的三角形:A1BC、A2BC、A3BC其内角会产生怎样的变化呢?生甲当点A离BC越来越近时,A越来越接近180,而其他两角越来越接近于 0.生乙三角形各内角的大小在变化过程中是相互影响的.师很好.在三角形中,最大的内角有没有等于或大于180的?生丙三角形的最大内角不会大于或等于180.师很好.看实验:当点A远离BC时,A越来越趋
60、近于0,而AB与AC逐渐趋向平行,这时,B、C逐渐接近为互补的同旁内角.即B+C180.请同学们猜一猜:三角形的内角与可能是多少?生齐声180师180,这一猜测是否准确呢?我们曾做过如下实验:(出示投影片6.5 B)实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图638(1)然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3),最后得图(4)所示的结果.实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起.师由实验可知:我们猜对了!三角形的内角之与正好为一个平角.但观察与实验得到的结论,并不一定正确、可靠,这样就需要通过数学证明.那么怎样证明呢?请同
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年执业药师之西药学专业二全真模拟考试试卷B卷含答案
- 2020-2024年上海市秋考语文试题汇编含答案
- 2025年岗位聘任制的合同范本
- 2025电子商务平台采购合同范本
- 肉类产品销售旺季促销策略与实践考核试卷
- 2025年建筑工程挖掘机租赁合同模板
- 收养家庭育儿心理健康教育考核试卷
- 电子出版物批发商的版权教育与培训考核试卷
- 罐头食品加工过程中的食品安全内控与外控考核试卷
- 社区精神健康促进策略考核试卷
- GB 7718-2025食品安全国家标准预包装食品标签通则
- 2025年高考历史总复习世界近代史专题复习提纲
- 2025-2030中国蜂蜜行业营销渠道与多元化经营效益预测研究报告
- 社工证考试试题及答案
- 内蒙古汇能集团笔试题库
- 2025年应急管理普法知识竞赛题(附答案)
- 《工程勘察设计收费标准》(2002年修订本)
- 广东省普通高中学生档案
- 中国民族史智慧树知到答案章节测试2023年云南大学
- 消防设施移交和清单-(精编版)
- 新中大A3财务系操作手册
评论
0/150
提交评论