山东省枣庄市峄城区2022年中考数学四模试卷含解析及点睛_第1页
山东省枣庄市峄城区2022年中考数学四模试卷含解析及点睛_第2页
山东省枣庄市峄城区2022年中考数学四模试卷含解析及点睛_第3页
山东省枣庄市峄城区2022年中考数学四模试卷含解析及点睛_第4页
山东省枣庄市峄城区2022年中考数学四模试卷含解析及点睛_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡

2、一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列四个图案中,不是轴对称图案的是()ABCD2 “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为( )A567103 B56.7104 C5.67105 D0.5671063如图,BCDE,若A=35,E=60,则C等于()A60B35C25D204对于一组统计数据:1,6,2,3,3,下列说法错误的是( )A平均数是3B中位数是3C众数是3D方差是2.55空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为( )A0.129102B1.29102C1.29

3、103D12.91016某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A5、6、5B5、5、6C6、5、6D5、6、67如图,在ABC中,AB=AC=5,BC=6,点M为BC的中点,MNAC于点N,则MN等于()ABCD8在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩人数232341则这些运动员成绩的中位数、众数分别为A、B、C、D、9关于的不等式的解集如图所示,则的取值是A0BCD10某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确

4、的是()A0.69106B6.9107C69108D6.9107二、填空题(共7小题,每小题3分,满分21分)11抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,1)和(-2,1)之间,其部分图象如图,则以下结论:b2-4ac1;当x-1时y随x增大而减小;a+b+c1;若方程ax2+bx+c-m=1没有实数根,则m2;3a+c1其中,正确结论的序号是_12已知直线y=kx(k0)经过点(12,5),将直线向上平移m(m0)个单位,若平移后得到的直线与半径为6的O相交(点O为坐标原点),则m的取值范围为_13因式分解:y316y_14如图,定长弦CD在以AB为直

5、径的O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CPAB于点P,若CD=3,AB=8,PM=l,则l的最大值是 15分解因式:x2yy_16当4x2时,函数y=(x+3)2+2的取值范围为_.17如图,正方形ABCD中,AB=3,以B为圆心,AB长为半径画圆B,点P在圆B上移动,连接AP,并将AP绕点A逆时针旋转90至Q,连接BQ,在点P移动过程中,BQ长度的最小值为_三、解答题(共7小题,满分69分)18(10分)如图,AEFD,AE=FD,B、C在直线EF上,且BE=CF,(1)求证:ABEDCF;(2)试证明:以A、B、D、C为顶点的四边形是平行四边形19(5分)201

6、8年春节,西安市政府实施“点亮工程”,开展“西安年最中国”活动,元宵节晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。在美食一条街上,小明买了一碗元宵,共5个,其中黑芝麻馅两个,五仁馅两个,桂花馅一个,当元宵端上来的时候,看着五个大小、色泽一模一样的元宵,小明的爸爸问了小明两个问题:(1)小明吃到第一个元宵是五仁馅的概率是多少?请你帮小明直接写出答案。(2)小明吃的前两个元宵是同一种馅的元宵概率是多少?请你利用你列表或树状图帮小明求出概率。20(8分)第二十四届冬季奧林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举

7、办了一次冬奥知识网上答题竞赛,甲、乙两校各有名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整. 收集数据从甲、乙两校各随机抽取名学生,在这次竞赛中他们的成绩如下:甲:乙:整理、描述数据按如下分数段整理、描述这两组样本数据:学校人数成绩甲乙 (说明:优秀成绩为,良好成绩为合格成绩为.)分析数据两组样本数据的平均分、中位数、众数如下表所示:学校平均分中位数众数甲乙其中 .得出结论(1)小明同学说:“这次竞赛我得了分,在我们学校排名属中游略偏上!”由表中数据可知小明是 _校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取-名学生的竞赛成绩,试估计这名学生的竞赛成

8、绩为优秀的概率为_ ;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由: ;(至少从两个不同的角度说明推断的合理性)21(10分)如图,ABC中AB=AC,请你利用尺规在BC边上求一点P,使ABCPAC不写画法,(保留作图痕迹).22(10分)如图,在的矩形方格纸中,每个小正方形的边长均为,线段的两个端点均在小正方形的顶点上.在图中画出以线段为底边的等腰,其面积为,点在小正方形的顶点上;在图中面出以线段为一边的,其面积为,点和点均在小正方形的顶点上;连接,并直接写出线段的长.23(12分)(1)(ab)2a(a2b)+(2a+b)(2ab)(2)(m1)24(14分)太原双塔寺又

9、名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG6米,GC53米请你根据以上数据,计算舍利塔的高度AB参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据轴对称图形的定义

10、逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误故选:B【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.2、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是非负数;当原数的绝对值1时,n是负数【详解】567000=5.67105,【点睛

11、】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3、C【解析】先根据平行线的性质得出CBE=E=60,再根据三角形的外角性质求出C的度数即可【详解】BCDE,CBE=E=60,A=35,C+A=CBE,C=CBEC=6035=25,故选C【点睛】本题考查了平行线的性质、三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.4、D【解析】根据平均数、中位数、众数和方差的定义逐一求解可得【详解】解:A、平均数为1+6+2+3+35=3,正确;B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确

12、;D、方差为15(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2=2.8,错误;故选:D【点睛】本题考查了众数、平均数、中位数、方差平均数平均数表示一组数据的平均程度中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量5、C【解析】试题分析:0.00129这个数用科学记数法可表示为1.29101故选C考点:科学记数法表示较小的数6、D【解析】5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(66)26;平均数是:(4256657483)20

13、6;故答案选D7、A【解析】连接AM,根据等腰三角形三线合一的性质得到AMBC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长【详解】解:连接AM,AB=AC,点M为BC中点,AMCM(三线合一),BM=CM,AB=AC=5,BC=6,BM=CM=3,在RtABM中,AB=5,BM=3,根据勾股定理得:AM= = =4,又SAMC=MNAC=AMMC,MN= = 故选A【点睛】综合运用等腰三角形的三线合一,勾股定理特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边8、C【解析】根据中位数和众数的概念进行求解【详解】解:将数据从小到大排列为:1.50,150,

14、1.60,1.60,160,1.65,1.65, 1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80众数为:1.75;中位数为:1.1故选C【点睛】本题考查1.中位数;2.众数,理解概念是解题关键9、D【解析】首先根据不等式的性质,解出x,由数轴可知,x-1,所以=-1,解出即可;【详解】解:不等式,解得x,由数轴可知,所以,解得;故选:【点睛】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示10、B【解析】试题解析:0.00 000 069=6.910-7,故选B点睛:绝对值小于1的正数也可以利用科

15、学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定二、填空题(共7小题,每小题3分,满分21分)11、【解析】试题解析:二次函数与x轴有两个交点,b2-4ac1,故错误,观察图象可知:当x-1时,y随x增大而减小,故正确,抛物线与x轴的另一个交点为在(1,1)和(1,1)之间,x=1时,y=a+b+c1,故正确,当m2时,抛物线与直线y=m没有交点,方程ax2+bx+c-m=1没有实数根,故正确,对称轴x=-1=-,b=2a,a+b+c1,3a+c1,故正确,故答案为.12、0m【解析】【分析】利用待定系

16、数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答【详解】把点(12,5)代入直线y=kx得,5=12k,k=;由y=x平移m(m0)个单位后得到的直线l所对应的函数关系式为y=x+m(m0),设直线l与x轴、y轴分别交于点A、B,(如图所示)当x=0时,y=m;当y=0时,x=m,A(m,0),B(0,m),即OA=m,OB=m,在RtOAB中,AB=,过点O作ODAB于D,SABO=ODAB=OAOB,OD=mm,m0,解得OD=m,由直线与圆的位置关系可知m 6,解得m,故答案为0m.【点睛】本题考查了直线的平移、

17、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了.13、y(y+4)(y4)【解析】试题解析:原式 故答案为点睛:提取公因式法和公式法相结合因式分解.14、4【解析】当CDAB时,PM长最大,连接OM,OC,得出矩形CPOM,推出PM=OC,求出OC长即可【详解】当CDAB时,PM长最大,连接OM,OC,CDAB,CPCD,CPAB,M为CD中点,OM过O,OMCD,OMC=PCD=CPO=90,四边形CPOM是矩形,PM=OC,O直径AB=8,半径OC=4,即PM=4.【点睛】本题考查矩形的判定和性质,垂径

18、定理,平行线的性质,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.15、y(x+1)(x1)【解析】观察原式x2yy,找到公因式y后,提出公因式后发现x2-1符合平方差公式,利用平方差公式继续分解可得.【详解】解:x2yyy(x21)y(x+1)(x1)故答案为:y(x+1)(x1)【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止16、-23y2【解析】先根据a=-1判断出抛物线的开口向下,故有最大值,可知对称轴x=-3,再根据-4x2,可知当x=-3时y

19、最大,把x=2时y最小代入即可得出结论【详解】解:a=-1,抛物线的开口向下,故有最大值,对称轴x=-3,当x=-3时y最大为2,当x=2时y最小为-23,函数y的取值范围为-23y2,故答案为:-23y2.【点睛】本题考查二次函数的性质,掌握抛物线的开口方向、对称轴以及增减性是解题关键17、31【解析】通过画图发现,点Q的运动路线为以D为圆心,以1为半径的圆,可知:当Q在对角线BD上时,BQ最小,先证明PABQAD,则QD=PB=1,再利用勾股定理求对角线BD的长,则得出BQ的长【详解】如图,当Q在对角线BD上时,BQ最小连接BP,由旋转得:AP=AQ,PAQ=90,PAB+BAQ=90四边

20、形ABCD为正方形,AB=AD,BAD=90,BAQ+DAQ=90,PAB=DAQ,PABQAD,QD=PB=1在RtABD中,AB=AD=3,由勾股定理得:BD=,BQ=BDQD=31,即BQ长度的最小值为(31)故答案为31【点睛】本题是圆的综合题考查了正方形的性质、旋转的性质和最小值问题,寻找点Q的运动轨迹是本题的关键,通过证明两三角形全等求出BQ长度的最小值最小值三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)证明见解析【解析】(1)根据平行线性质求出B=C,等量相减求出BE=CF,根据SAS推出两三角形全等即可;(2)借助(1)中结论ABEDCF,可证出AE平行且等于

21、DF,即可证出结论.证明:(1)如图,ABCD,B=CBF=CEBE=CF在ABE与DCF中,ABEDCF(SAS); (2)如图,连接AF、DE由(1)知,ABEDCF,AE=DF,AEB=DFC,AEF=DFE,AEDF,以A、F、D、E为顶点的四边形是平行四边形19、(1) ; (2) .【解析】(1)根据概率=所求情况数与总情况数之比代入解得即可.(2)将小明吃到的前两个元宵的所有情况列表出来即可求解.【详解】(1)5个元宵中,五仁馅的有2个,故小明吃到的第一个元宵是五仁馅的概率是;(2)小明吃到的前两个元宵的所有情况列表如下(记黑芝麻馅的两个分别为、,五仁馅的两个分别为、,桂花馅的一

22、个为c):由图可知,共有20种等可能的情况,其中小明吃到的前两个元宵是同一种馅料的情况有4种,故小明吃到的前两个元宵是同一种馅料的概率是.【点睛】本题考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求:情况数与总情况数之比.20、80;(1)甲;(2);(3)乙学校竞赛成绩较好,理由见解析【解析】首先根据乙校的成绩结合众数的定义即可得出a的值;(1)根据两个学校成绩的中位数进一步判断即可;(2)根据概率的定义,结合乙校优秀成绩的概率进一步求解即可;(3)根据题意,从平均数以及中位数两方面加以比较分析即可.【详解】由乙校成绩可知,其中80出现的次数最多,故80为该组数据的众数,a=80,故答案为:80;(1)由表格可知,甲校成绩的中位数为60,乙校成绩的中位数为75,小明这次竞赛得了分,在他们学校排名属中游略偏上,小明为甲校学生,故答案为:甲;(2)乙校随便抽取一名学生的成绩,该学生成绩为优秀的概率为:,故答案为:;(3)乙校竞赛成绩

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论