版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、-. z.导轨与导体棒问题一、单棒问题【典例1】如下图,AB杆受一冲量作用后以初速度v0=4m/s沿水平面的固定轨道运动,经一段时间后而停顿AB的质量为m=5g,导轨宽为L=0.4m,电阻为R=2,其余的电阻不计,磁感强度B=0.5T,棒和导轨间的动摩擦因数为=0.4,测得杆从运动到停顿的过程过导线的电量q=102C,求:上述过程中g取10m/s21AB杆运动的距离;2AB杆运动的时间;3当杆速度为2m/s时,其加速度为多大?【答案】1 0.1m;20.9s;312m/s22根据动量定理有:F安t+mgt=0mv0而F安t=BLt=BLq,得:BLq+mgt=mv0,解得:t=0.9s3当杆速
2、度为2m/s时,由感应电动势为:E=BLv安培力为:F=BIL,而I=然后根据牛顿第二定律:F+mg=ma代入得:解得加速度:a=12m/s2,25.20分如图(a),超级高铁(Hyperloop)是一种以真空管道运输为理论核心设计的交通工具,它具有超高速、低能耗、无噪声、零污染等特点。如图(b),管道中固定着两根平行金属导轨MN、PQ,两导轨间距为r;运输车的质量为m,横截面是半径为r的圆。运输车上固定着间距为D、与导轨垂直的两根导体棒1和2,每根导体棒的电阻为R,每段长度为D的导轨的电阻也为R。其他电阻忽略不计,重力加速度为g。 (1)如图(c),当管道中的导轨平面与水平面成=30时,运输
3、车恰好能无动力地匀速下滑。求运输车与导轨间的动摩擦因数; (2)在水平导轨上进展实验,不考虑摩擦及空气阻力。当运输车由静止离站时,在导体棒2后间距为D处接通固定在导轨上电动势为E的直流电源,此时导体棒1、2均处于磁感应强度为B,垂直导轨平向下的匀强磁场中,如图(d)。求刚接通电源时运输车的加速度的大小;电源阻不计,不考虑电磁感应现象当运输车进站时,管道依次分布磁感应强度为B,宽度为D的匀强磁场,且相邻的匀强磁场的方向相反。求运输车以速度vo从如图(e)通过距离D后的速度v。【典例3】 如下图,水平放置的光滑平行金属导轨上有一质量为m的金属棒ab.导轨的一端连接电阻R,其他电阻均不计,磁感应强度
4、为B的匀强磁场垂直于导轨平面向下,金属棒ab在一水平恒力F作用下由静止开场向右运动则()A随着ab运动速度的增大,其加速度也增大B外力F对ab做的功等于电路中产生的电能C当ab做匀速运动时,外力F做功的功率等于电路中的电功率D无论ab做何种运动,它克制安培力做的功一定等于电路中产生的电能【答案】CD【典例4】 一个闭合回路由两局部组成,如下图,右侧是电阻为r的圆形导线,置于竖直方向均匀变化的磁场B1中,左侧是光滑的倾角为的平行导轨,宽度为d,其电阻不计磁感应强度为B2的匀强磁场垂直导轨平面向上,且只分布在左侧,一个质量为m、电阻为R的导体棒此时恰好能静止在导轨上,分析下述判断正确的选项是()A
5、圆形导线中的磁场,可以方向向上且均匀增强,也可以方向向下且均匀减弱B导体棒ab受到的安培力大小为mgsin C回路中的感应电流为eq f(mgsin ,B2d)D圆形导线中的电热功率为eq f(m2g2sin2,Boal(2,2)d2)(rR)【答案】ABC【解析】根据左手定则,导体棒上的电流从b到a,根据电磁感应定律可得A项正确;根据共点力平衡知识,导体棒ab受到的安培力大小等于重力沿导轨向下的分力,即mgsin ,B项正确;根据mgsin B2Id,解得Ieq f(mgsin ,B2d),C项正确;圆形导线的电热功率P=I2r=(eq f(mgsin ,B2d)2r=eq f(m2g2si
6、n2,Boal(2,2)d2)r,D项错误.【典例4】如图甲所示,两根足够长平行金属导轨MN、PQ相距为L,导轨平面与水平面夹角为,金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m。导轨处于匀强磁场中,磁场的方向垂直于导轨平面斜向上,磁感应强度大小为B。金属导轨的上端与开关S、定值电阻R1和电阻箱R2相连。不计一切摩擦,不计导轨、金属棒的电阻,重力加速度为g。现在闭合开关S,将金属棒由静止释放。(1) 判断金属棒ab中电流的方向;(2) 假设电阻箱R2接入电路的阻值为0,当金属棒下降高度为h时,速度为v,求此过程中定值电阻上产生的焦耳热Q;(3) 当B0.40 T
7、,L0.50 m,37时,金属棒能到达的最大速度vm随电阻箱R2阻值的变化关系,如图乙所示。取g10 m/s2,sin 370.60,cos 370.80。求R1的阻值和金属棒的质量m。【答案】(1)ba(2)mgheq f(1,2)mv2(3)2.0 0.1 kg(3)金属棒到达最大速度vm时,切割磁感线产生的感应电动势:EBLvm由闭合电路的欧姆定律得:Ieq f(E,R1R2)从b端向a端看,金属棒受力如下图金属棒到达最大速度时,满足:mgsin BIL0由以上三式得vmeq f(mgsin ,B2L2)(R2R1)由图乙可知:斜率keq f(6030,2) ms1115 ms11,纵轴
8、截距v30 m/s所以eq f(mgsin ,B2L2)R1v,eq f(mgsin ,B2L2)k解得R12.0 ,m0.1 kg24如下图,相距L=0.4m、电阻不计的两平行光滑金属导轨水平放置,一端与阻值R=0.15的电阻相连,导轨处于磁感应强度B=0.5T的匀强磁场中,磁场方向垂直于导轨平面向里。质量m=0.1kg、电阻r=0.05的金属棒置于导轨上,并与导轨垂直。t=0时起棒在水平外力F作用下以初速度v0=2m/s、加速度a=1m/s2沿导轨向右匀加速运动。求:1t=2s时回路中的电流;2t=2s时外力F大小;3前2s通过棒的电荷量。【答案】14A20.9N36C【解析】1t=2s时
9、,棒的速度为:v1=v0+at=2+12=4m/s此时由于棒运动切割产生的电动势为:E=BLv1=0.50.44V=0.8V由闭合电路欧姆定律可知,回路中的感应电流:2对棒,根据牛顿第二定律得:FBIL=ma解得F=BIL+ma=0.540.4+0.11=0.9N3t=2s时棒的位移根据法拉第电磁感应定律得:根据闭合电路欧姆定律得通过棒的电荷量:【名师点睛】1棒向右匀加速运动,由速度时间公式求出t=1s时的速度,由E=BLv求出感应电动势,由闭合电路欧姆定律求解回路中的电流。2根据牛顿第二定律和安培力公式求解外力F的大小。3由位移时间公式求出第2s棒通过的位移大小,由法拉第电磁感应定律、欧姆定
10、律和电荷量公式求解电荷量。2如下图,两根足够长平行金属导轨MN、PQ固定在倾角37的绝缘斜面上,顶部接有一阻值R3 的定值电阻,下端开口,轨道间距L1 m整个装置处于磁感应强度B2 T的匀强磁场中,磁场方向垂直斜面向上质量m1 kg的金属棒ab置于导轨上,ab在导轨之间的电阻r1 ,电路中其余电阻不计金属棒ab由静止释放后沿导轨运动时始终垂直于导轨,且与导轨接触良好不计空气阻力影响金属棒ab与导轨间动摩擦因数0.5,sin 370.6,cos 370.8,取g10 m/s2.(1)求金属棒ab沿导轨向下运动的最大速度vm;(2)求金属棒ab沿导轨向下运动过程中,电阻R上的最大电功率PR;(3)
11、假设从金属棒ab开场运动至到达最大速度过程中,电阻R上产生的焦耳热总共为1.5 J,求流过电阻R的总电荷量q.解析:(1)金属棒由静止释放后,沿斜面做变加速运动,加速度不断减小,当加速度为零时有最大速度vm.由牛顿第二定律得mgsin mgcos F安0F安BIL,Ieq f(BLvm,Rr),解得vm2.0 m/s(2)金属棒以最大速度vm匀速运动时,电阻R上的电功率最大,此时PRI2R,解得PR3 W(3)设金属棒从开场运动至到达最大速度过程中,沿导轨下滑距离为*,由能量守恒定律得mg*sin mg*cos QRQreq f(1,2)mveq oal(2,m)根据焦耳定律eq f(QR,Q
12、r)eq f(R,r),解得*2.0 m根据qeq *to(I) t,eq *to(I)eq f(*to(E),Rr)eq *to(E)eq f(,t)eq f(BL*,t),解得q1.0 C答案:(1)2 m/s(2)3 W(3)1.0 C26CD、EF是水平放置的电阻可忽略的光滑平行金属导轨,两导轨距离水平地面高度为H,导轨间距为L,在水平导轨区域存在方向垂直导轨平面向上的有界匀强磁场磁场区域为CPQE,磁感应强度大小为B,如下图。导轨左端与一弯曲的光滑轨道平滑连接,弯曲的光滑轨道的上端接有一电阻R。将一阻值也为R的导体棒从弯曲轨道上距离水平金属导轨高度h处由静止释放,导体棒最终通过磁场区
13、域落在水平地面上距离水平导轨最右端水平距离*处。导体棒质量为m,导体棒与导轨始终接触良好,重力加速度为g。求:1电阻R中的最大电流和整个电路中产生的焦耳热。2磁场区域的长度d。【答案】12【解析】1由题意可知,导体棒刚进入磁场的瞬间速度最大,产生的感应电动势最大,感应电流最大由机械能守恒定律有:解得:由法拉第电磁感应定律得:由闭合电路欧姆定律得:联立解得:由平抛运动规律可得:解得:由能量守恒定律可知整个电路中产生的焦耳热为:【名师点睛】对于电磁感应问题两条研究思路:一条从力的角度,重点是分析安培力作用下导体棒的平衡问题,根据平衡条件列出方程;另一条是能量,分析涉及电磁感应现象中的能量转化问题,
14、根据动能定理、功能关系等列方程求解。【典例9】如下图,水平放置的足够长平行导轨MN、PQ的间距为L=0.1m,电源的电动势E=10V,阻r=0.1,金属杆EF的质量为m=1kg,其有效电阻为R=0.4,其与导轨间的动摩擦因素为=0.1,整个装置处于竖直向上的匀强磁场中,磁感应强度B=1T,现在闭合开关,求:1闭合开关瞬间,金属杆的加速度;2金属杆所能到达的最大速度;3当其速度为v=20m/s时杆的加速度为多大?g=10m/s2,不计其它阻力【答案】11m/s2;250m/s;30.6m/s2【解析】1根据闭合电路欧姆定律,有:I=安培力:FA=BIL=1200.1=2N根据牛顿第二定律,有:a
15、=【典例10】如下图,长平行导轨PQ、MN光滑,相距m,处在同一水平面中,磁感应强度B=0.8T的匀强磁场竖直向下穿过导轨面横跨在导轨上的直导线ab的质量m =0.1kg、电阻R =0.8,导轨电阻不计导轨间通过开关S将电动势E =1.5V、电阻r =0.2的电池接在M、P两端,试计算分析:1在开关S刚闭合的初始时刻,导线ab的加速度多大?随后ab的加速度、速度如何变化?2在闭合开关S后,怎样才能使ab以恒定的速度 =7.5m/s沿导轨向右运动?试描述这时电路中的能量转化情况通过具体的数据计算说明【答案】见解析设最终到达的最大速度为m,根据上述分析可知:所以m/s=3.75m/s2如果ab以恒
16、定速度m/s向右沿导轨运动,则ab中感应电动势V=3V由于,这时闭合电路中电流方向为逆时针方向,大小为:A=1.5A直导线ab中的电流由b到a,根据左手定则,磁场对ab有水平向左的安培力作用,大小为N=0.6N所以要使ab以恒定速度m/s向右运动,必须有水平向右的恒力N作用于ab上述物理过程的能量转化情况,可以概括为以下三点:作用于ab的恒力F的功率:W=4.5W电阻R +r产生焦耳热的功率:W=2.25W逆时针方向的电流,从电池的正极流入,负极流出,电池处于充电状态,吸收能量,以化学能的形式储存起来电池吸收能量的功率:W=2.25W由上看出,符合能量转化和守恒定律沿水平面匀速运动机械能不变3
17、如下图,一对足够长的平行光滑金属导轨固定在水平面上,两导轨间距为L,左端接一电源,其电动势为E、阻为r,有一质量为m、长度也为L的金属棒置于导轨上,且与导轨垂直,金属棒的电阻为R,导轨电阻可忽略不计,整个装置处于磁感应强度为B,方向竖直向下的匀强磁场中(1)假设闭合开关S的同时对金属棒施加水平向右恒力F,求棒即将运动时的加速度和运动过程中的最大速度;(2)假设开关S开场是断开的,现对静止的金属棒施加水平向右的恒力F,一段时间后再闭合开关S;要使开关S闭合瞬间棒的加速度大小为eq f(F,m),则F需作用多长时间解析:(1)闭合开关S的瞬间回路电流Ieq f(E,Rr)金属棒所受安培力水平向右,
18、其大小FAILB由牛顿第二定律得aeq f(FAF,m)整理可得aeq f(E,Rrm)LBeq f(F,m)金属棒向右运动的过程中,切割磁感线产生与电源正负极相反的感应电动势,回路中电流减小,安培力减小,金属棒做加速度逐渐减小的加速运动,匀速运动时速度最大,此时由平衡条件得FAF由安培力公式得FAILB由闭合电路欧姆定律得Ieq f(BLvmE,Rr)联立求得vmeq f(FRr,B2L2)eq f(E,BL)(2)设闭合开关S时金属棒的速度为v,此时电流Ieq f(BLvE,Rr)由牛顿第二定律得aeq f(FFA,m)所以加速度aeq f(F,m)eq f(BLvE,Rrm)LB假设加速
19、度大小为eq f(F,m),则eq blc|rc|(avs4alco1(f(F,m)f(BLvE,Rrm)LB)eq f(F,m)解得速度v1eq f(E,BL),v2eq f(E,BL)eq f(2FRr,B2L2)未闭合开关S前金属棒的加速度一直为a0eq f(F,m)解得恒力F作用时间t1eq f(v1,a0)eq f(mE,FBL)或t2eq f(v2,a0)eq f(mE,FBL)eq f(2mRr,B2L2)答案:(1)eq f(E,Rrm)LBeq f(F,m)eq f(FRr,B2L2)eq f(E,BL)(2)eq f(mE,FBL)或eq f(mE,FBL)eq f(2mR
20、r,B2L2)【典例8】如下图,在水平面有一个半径为a的金属圆盘,处在竖直向下磁感应强度为B的匀强磁场中,金属圆盘绕中心O顺时针匀速转动,圆盘的边缘和中心分别通过电刷与右侧电路相连,圆盘的边缘和中心之间的等效电阻为r,外电阻为R,电容器的电容为C,单刀双掷开关S与触头1闭合,电路稳定时理想电压表读数为U,右侧光滑平行水平导轨足够长,处在竖直向下磁感强度也为B的匀强磁场中,两导轨电阻不计,间距为L,导轨上垂直放置质量为m,电阻也为R的导体棒,导体棒与导轨始终垂直且接触良好,求:1金属圆盘匀速转动的角度;2开关S与触头2闭合后,导体棒运动稳定时的速度v【答案】1;22根据动量定理得:Ft=mv0,
21、而Ft=BILt=BLq,电荷的变化量q=CU,电压的变化量U=UU=UBLv则mv=BLCUBLv解得:v=【典例11】光滑U型金属框架宽为L,足够长,其上放一质量为m的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初速v0,使棒始终垂直框架并沿框架运动,如下图。求导体棒的最终速度。【答案】练习:如下图,水平放置的金属导轨宽为L,质量为m的金属杆ab垂直放置在导轨上,导轨上接有阻值为R的电阻和电容为C的电容器以及电流表。竖直向下的匀强磁场的磁感应强度为B。现用水平向右的拉力使ab杆从静止开场以恒定的加速度向右做匀加速直线运动,电流表读数恒为I,不计其它电阻和阻力。求:1ab杆的加速度。
22、2t时刻拉力的大小。8. 平行金属导轨MN竖直放置于绝缘水平地板上如下图,金属杆PQ可以紧贴导轨无摩擦滑动,导轨间除固定电阻R外,其他电阻不计,匀强磁场B垂直穿过导轨平面,导体棒PQ质量为M,闭合S,同时让金属杆PQ自由下落,试确定稳定时,(1)金属杆的速度是多少?(2)假设将固定电阻R换成一个耐压值足够大的电容器,电容为C.闭合S的同时,释放金属杆,试求稳定状态下回路的电流【答案】(1)eq f(MgR,B2L2)(2)eq f(BLCmg,B2L2Cm)(2)aeq f(v,t)EuBLvIeq f(Q,t)QCu将得:IBLaC对金属杆由牛顿第二定律,得MgBILma由得aeq f(mg
23、,B2L2Cm),Ieq f(BLCmg,B2L2Cm).【典例12】如下图, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金属棒ab可紧贴导轨自由滑动.现让ab由静止下滑, 不考虑空气阻力, 也不考虑任何局部的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度为多大? 【答案】【解析】:ab在mg 作用下加速运动,经时间 t ,速度增为v,a =v / t产生感应电动势 E=Bl v 电容器带电量 Q=CE=CBl v,感应电流I=Q/t=CBL v/ t=CBl a产生安培力F=BIl =CB2
24、l 2a,由牛顿运动定律 mg-F=mama= mg - CB2 l 2a ,a= mg / (m+C B2 l 2)ab做初速为零的匀加直线运动, 加速度 a= mg / (m+C B2 l 2)落地速度为2518分如图,在竖直平面有两条间距为L的足够长的平行长直金属导轨,上端接有一个阻值为R的电阻和一个耐压值足够大的电容器,电容器的电容为C,且不带电。质量为m的导体棒ab垂直跨在导轨上,接触良好。导轨所在空间有垂直导轨平面向里的匀强磁场,磁感应强度大小为B。S为单刀双掷开关。现将开关S接1,由静止释放导体棒ab。重力加速度为g,不计导轨和导体棒的电阻,不计一切摩擦。(1)当金属棒向下运动的
25、速度为v1时,电容器所带的电量q;(2) 求导体棒ab下落h高度时的速度大小v2;(3)当速度为v2时迅速将开关S接2,请分析说明此后导体棒ab的运动情况;并计算导体棒ab在开关接2后又下落足够大的高度H的过程中电阻R上所产生的电热Q。25、【答案】1231金属棒向下以速度为v1切割磁感线产生的感应电动势2分电容器所带电荷量2分2设在时间,金属棒速度变化为,金属棒产生的感应电动势变化1分电容器两极板电压变化1分电容器所带电荷量变化1分金属棒中的电流1分对金属棒,由牛顿第二定律有:1分联立解得1分可以看出加速度与时间无关,说明金属棒做匀加速直线运动,设金属棒沿导轨向下运动h时的速度为v2,由1分
26、解得1分(3)此时迅速将开关S接2。假设重力大于安培力,则棒先做加速运动后做匀速运动;假设重力等于于安培力,则棒做匀速运动;假设重力小于安培力,则棒先做减速运动后做匀速运动。因为最后匀速,所以由平衡条件 2分解得 1分对导体棒在该过程使用动能定理: 2分故此过程中电阻R上产生的电热:1分双杆模型前提条件都是光滑导轨:21两固定水平平行金属导轨间距为L,导轨上放着两根一样导体棒ab和每根导体棒质量均为m,电阻均为R,导轨光滑且电阻不计,整个导轨平面都有竖直向上的匀强磁场,磁感强度为B,开场时ab和cd两导体棒有方向相反的水平初速度,大小分别为和。1求从开场到最终稳定的过程中回路总共产生的焦耳热;
27、2当d棒的速度大小变为/4时,求:通过d棒的电荷量为多少?两棒间的距离增大了多少?【答案】12或或【解析】1从开场到最终稳定的过程中,两棒总动量守恒,则有:2mv0mv0=2mv解得:由能量守恒可得从开场到最终稳定回路中产生的焦耳热为:2分析两棒运动的情况可知,ab棒的速度大小为v0/4有两种情况:1当ab棒速度未反向时,即,设此时cd棒的速度为v1,由动量守恒定律:解得:2当ab棒速度反向时,即,设此时cd棒的速度为v2,由动量守恒定律:解得:对棒由动量定理可得:其中F安=BILE=BL(vcdvab)q=It带入两种情况可知:当时,解得:当时,解得:由可得:或22如下图,在大小为B的匀强磁
28、场区域跟磁场方向垂直的平面中有两根固定的足够长的金属平行导轨,在导轨上面平放着两根导体棒ab和cd,两棒彼此平行,构成一矩形回路。导轨间距为l,导体棒的质量都是m,电阻各为R,导轨局部电阻可忽略不计。设导体棒可在导轨上无摩擦地滑行,初始时刻ab棒静止,给cd棒一个向右的初速v0,求1当cd棒速度减为0.8v0时加速度;2从开场运动到最终稳定,电路中产生的电能多大;3两棒之间距离增长量*的上限。【答案】123【解析】1设当cd棒速度减为0.8v0时ab棒的速度为v,由动量守恒定律解之得:此时回路的电流是cd棒的加速度为解得:2据动量守恒定律,设两棒稳定时共同的末速度为v得:25(18分)如图,金
29、属平行导轨MN、MN和金属平行导執PQR、PQR分别同定在高度差为h(数值未知)的水平台面上。导轨MN、MN左端接有电源,MN与MN的间距为L=0.10m线框空间存在竖直向上的匀强磁场,磁感应强度B1=0.20T;平行导轨PQR与PQR的间距为L=0.10m,其中PQ与PQ是圆心角为60、半径为r=0.50m的圆弧导轨,QR与QR是水平长直导轨,QQ右侧有方向竖直向上的匀强磁场,磁感应强度B2=0.40T。导体棒a质量m1=0.02kg,电阻R1=2,0,放置在导轨MN、MN右侧NN边缘处;导体棒b质量m2=0.04kg,电阻R2=4.0放置在水平导轨*处。闭合开关K后,导体棒a从NN水平抛出
30、,恰能无碰撞地从PP处以速度v1=2m/s滑入平行导轨,且始终没有与棒b相碰。重力加速度g=10m/s2,不计一切摩擦及空气阻力。求(1)导体棒b的最大加速度。(2)导体棒a在磁场B2中产生的焦耳热。(3)闭合开关K后,通过电源的电荷量q。25(1) 2 3【解析】试题分析:设a棒在水平轨道上时的速度为v2,根据动能定理求出速度,因为a棒刚进入磁场时,ab棒中的电流最大,b受到的力最大,加速度最大,再根据电磁感应定律和牛顿第二定律即可求出加速度;两个导体棒在运动过程中,动量守恒和能量守恒,当两棒的速度相等时回路中的电流为零,此后两棒做匀速运动,两棒不在产生焦耳热,根据动量守恒和能量守恒,即可求
31、出导体棒a在磁场中产生的焦耳热;设接通开关后,a棒以速度v0水平抛出,根据动量定理即可通过电源的电荷量。1设a棒在水平轨道上时的速度为v2,根据动能定理: 2分解得:v2=3m/s因为a棒刚进入磁场时,ab棒中的电流最大,b受到的力最大,加速度最大,所以有:电动势为: 1分电流为: 1分根据牛顿第二定律: 1分联立以上解得: 1分2两个导体棒在运动过程中,动量守恒和能量守恒,当两棒的速度相等时回路中的电流为零,此后两棒做匀速运动,两棒不在产生焦耳热,所以根据动量守恒: 2分由能量守恒定律: 2分 由于ab棒串联在一起,所以有: 2分解得: 1分3设接通开关后,a棒以速度v0水平抛出,则有: 1
32、分 对a棒冲出过程由动量定理:即: 2分代入数据解得:q=1C 2分如图,MN、PQ为两根足够长的水平放置的平行金属导轨,间距L1 m;整个空间以OO为边界,左侧有垂直导轨平面向上的匀强磁场,磁感应强度大小B11 T,右侧有方向一样、磁感应强度大小B22 T的匀强磁场。两根完全一样的导体棒a、b,质量均为m0.1 kg,与导轨间的动摩擦因数均为0.2,其在导轨间的电阻均为R1 。开场时,a、b棒均静止在导轨上,现用平行于导轨的恒力F0.8 N向右拉b棒。假定a棒始终在OO左侧运动,b棒始终在OO右侧运动,除导体棒外其余电阻不计,滑动摩擦力和最大静摩擦力大小相等,g取10 m/s2。a棒开场滑动
33、时,求b棒的速度大小;当b棒的加速度为1.5 m/s2时,求a棒的加速度大小;经过足够长的时间后,b棒开场做匀加速运动,求该匀加速运动的加速度大小,并计算此时a棒中电流的热功率。【答案】(1)0.2 m/s(2)0.25 m/s2(3)0.4 m/s20.078 4 W2519分如下图,PQ和MN是固定于倾角为30o斜面的平行光滑金属轨道,轨道足够长,其电阻可忽略不计。金属棒ab、cd放在轨道上,始终与轨道垂直,且接触良好。金属棒ab的质量为2m、cd的质量为m,长度均为L、电阻均为R;两金属棒的长度恰好等于轨道的间距,并与轨道形成闭合回路。整个装置处在垂直斜面向上、磁感应强度为B的匀强磁场中
34、,假设锁定金属棒ab不动,使金属棒cd在与其垂直且沿斜面向上的恒力F=2mg作用下,沿轨道向上做匀速运动。重力加速度为g;1试推导论证:金属棒cd克制安培力做功的功率P安 等于电路获得的电功率P电;PQNMabdcBP30o30o2设金属棒cd做匀速运动中的*时刻t0=0,恒力大小变为F=1.5mg,方向不变,同时解锁、静止释放金属棒ab,直到t时刻金属棒ab开场做匀速运动;求:t时刻以后金属棒ab的热功率Pab;0t时刻通过金属棒ab的电量q;25解:1金属棒cd做匀速运动的速度为v,E=BLv eq oac(,1)I=E/2R eq oac(,2)FA=IBL eq oac(,3)金属棒c
35、d克制安培力做功的功率P安 = FAv eq oac(,4)电路获得的电功率P电=eq oac(,5)由eq oac(,1)eq oac(,2)eq oac(,3)eq oac(,4)P安 =eq oac(,6)eq oac(,1)eq oac(,3)eq oac(,5)P电=eq oac(,7)所以:P安 = P电 eq oac(,8)评分标准:eq oac(,2)eq oac(,4)eq oac(,5)各式1分,eq oac(,3)eq oac(,6)eq oac(,7)eq oac(,8)各式0.5分,共6分。其他解确同样给分。另解:金属棒cd做匀速运动的速度为v,cd杆受力平衡有联立解
36、得 , , 根据:所以:2金属棒ab做匀速运动,则有I1BL=2mgsin30o eq oac(,9)金属棒ab的热功率Pab=I12R eq oac(,10)由eq oac(,9)eq oac(,10)解得:Pab=eq oac(,11)评分标准:eq oac(,9)、eq oac(,11)各式2分,eq oac(,10)式1分,共5分。其他解确同样给分。设t后时刻金属棒ab做匀速运动速度为v1,金属棒cd也做匀速运动的速度为v2;由金属棒ab、金属棒cd组成系统动量守恒:mv=2mv1+m v2 eq oac(,12)回路电流 I1=eq oac(,13)由eq oac(,9)eq oac
37、(,12)eq oac(,13)解得:金属棒ab做匀速运动速度为v1=eq oac(,14)0t时刻对金属棒a b分析:在电流为i的很短时间,速度的该变量为由动量定理得:eq oac(,15)对eq oac(,15)进展求和得:eq oac(,16)解得BLq-mgt=2mv1 eq oac(,17)由eq oac(,14)eq oac(,15)解得:q=eq oac(,18)评分标准:eq oac(,12)eq oac(,13)eq oac(,14)eq oac(,16)eq oac(,17)eq oac(,18)各式1分,eq oac(,15)式2分,共8分。其他解确同样给分。或:设ab、
38、cd杆之间距离变化量为*,则:设任意时刻,ab杆速度为,cd杆速度为,利用微元求和可得:对ab杆进展动量定理:联立可得:求解得:同样可以得到答案如下图,平行金属导轨与水平面间夹角均为= 370 ,导轨间距为 lm ,电阻不计,导轨足够长两根金属棒 ab 和 a b 的质量都是0.2kg ,电阻都是 1 ,与导轨垂直放置且接触良好,金属棒和导轨之间的动摩擦因数为0.25 ,两个导轨平面处均存在着垂直轨道平面向上的匀强磁场图中未画出,磁感应强度 B 的大小一样让a, b固定不动,将金属棒ab 由静止释放,当 ab 下滑速度到达稳定时,整个回路消耗的电功率为 8W 求 ( 1 ) ab 到达的最大速
39、度多大? ( 2 ) ab 下落了 30m 高度时,其下滑速度已经到达稳定,则此过程中回路电流的发热量 Q 多大? ( 3如果将 ab 与 a b同时由静止释放,当 ab 下落了 30m 高度时,其下滑速度也已经到达稳定,则此过程中回路电流的发热量 Q 为多大? ( g =10m / s2 , sin370 =0.6 ,cos370 =0 . 8 ) 如下图,足够长的光滑平行金属导轨cd和ef水平放置,在其左端连接倾角为=37的光滑金属导轨ge、hc,导轨间距均为L=1m,在水平导轨和倾斜导轨上,各放一根与导轨垂直的金属杆,金属杆与导轨接触良好金属杆a、b质量均为M=0.1kg,电阻Ra=2、Rb=3,其余电阻不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026中国农业大学猪病研究创新团队博士后招聘笔试备考试题及答案解析
- 2026上海市农业生物基因中心招聘10人(第一批)笔试备考题库及答案解析
- 2026年合肥一六八新店花园学校小学部教师招聘笔试备考题库及答案解析
- 2026云南昆明高新技术产业开发区管理委员会选聘国有企业高级管理人员4人笔试备考试题及答案解析
- 2026广东能源集团财务有限公司社会招聘1人笔试备考试题及答案解析
- 2026年兰州现代职业学院单招综合素质考试备考试题含详细答案解析
- 成都市沙河中学校(成都市树德实验中学沙河校区)-2025-2026学年度员额教师招聘笔试备考试题及答案解析
- 2026年郑州澍青医学高等专科学校高职单招职业适应性测试模拟试题及答案详细解析
- 2026广东河源市连平县招聘临聘教师16人笔试备考题库及答案解析
- 2026年中国电子科技集团公司第四十三研究所招聘笔试备考题库及答案解析
- 2026年马年德育实践作业(图文版)
- 2026春译林8下单词表【Unit1-8】(可编辑版)
- 2025至2030生物燃料酶行业调研及市场前景预测评估报告
- 2025中国即饮咖啡市场趋势报告-欧睿咨询
- 护士心理护理操作规程
- 跨境电商案例分析
- 聚丙烯酰胺安全培训课件
- 广州某国际机场航班延误旅客服务与应急处理办法
- 共享单车项目2025年经济效益与社会效益综合评价方案
- 阶梯式早期活动在ICU机械通气患者中的应用课件
- 上海市海绵城市建设技术标准图集DBJT08-128-2019 2019沪L003、2019沪S701
评论
0/150
提交评论