《解析几何》课程教案_第1页
《解析几何》课程教案_第2页
《解析几何》课程教案_第3页
《解析几何》课程教案_第4页
《解析几何》课程教案_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一章矢量与坐标教学目的1、理解矢量的有关概念,掌握矢量线性运算的法则及其运算性质;2、理解矢量的乘法运算的意义,熟悉它们的几何性质,并掌握它们的运算规律3、利用矢量建立坐标系概念,并给出矢量线性运算和乘法运算的坐标表示4、能熟练地进行矢量的各种运算,并能利用矢量来解决一些几何问题。教学重,点;矢量的概念和矢量的数性积,矢性积,混合积。教学难点矢量数性积,矢性积与混合积的几何意义。参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延堂马世祥主编,兰州大学出版社,2000.08授课课时8 1.1 矢量的概念教学目的1、理解矢量的有关

2、概念;2、掌握矢量间的关系。教学重点 矢量的两个要素:摸与方向。教学难点矢量的相等参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延堂马世祥主编,兰州大学出版社,2000.08授课课时1一、有关概念.矢量. 矢量的表示.矢量的模二、特殊矢量.零矢0.单位矢d三、矢量间的关系例平行矢相等矢自由矢相反矢共线矢共面矢固定矢量1.设在平面上给了一个四边形ABCD点K、L例平行矢相等矢自由矢相反矢共线矢共面矢固定矢量1.设在平面上给了一个四边形ABCD点K、L、M N分别是边 AB、BC、CD、DA的中点,求证: 应.当ABC虚空间四边形

3、时,这等式是否也成立?例2.回答下列问题:矢量j/ b ,力 F,则是否有J/?(2)(4)作业题:矢量3 ,b ,c共面,乙d ,声也共面,则j , ?, e是否也共面?矢量2 j, F中7 b,则3,不,5是否共面?矢量屈,CD共线,在什么条件下 AC, B力也共线?.设点o是正六边形abcdef中心,在矢量04、03、0C、0。、0、。尸、近、BC、CD、丽、明和河中,哪些矢量是相等的?.如图1-3,设ABCDEFGK一个平行六面体,在下列各对矢量中,找出相 等的矢量和互为相反矢量的矢量:(2)AE(4) AD、胴;阮、丽.矢量的线性运算(1.2矢量的加法1.3矢量的数乘)教学目的1、掌

4、握矢量加法的两个法则、数量与矢量的乘法概念及运算律;2、能用矢量法证明有关几何命题。教学重,女矢量加法的平行四边形法则、数量与矢量的乘法概念教学难点 运算律的证明、几何命题转化为矢量间的关系参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社,2001.062000.08(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社,2000.08授课课时1一、概念.两个例子.矢量的加法法则(1)三角形法则 (2)平行四边形法则、性质.运算规律交换律 +b = + +a , r +. r /(2)结合律(a+b)+ c = a+(b +c);口 = 口; r r .fl+(-

5、fl) = 0.矢量加法的多边形法则.矢量减法.三角不等式 |。+而 w| 口 |+| 山, a-biiai-i 质;(2)例1.+ + + + + +| % + 0? + , + n | W | % | + | & |+| & |.从矢量方程组3+4y= a2x-3y=i中解出矢量;.例2.用矢量法证明平行四边形对角线互相平分作业题:r .r . r.设两矢量4与b共线,i端正+ +b =b +口 .1.3 数量乘矢量.证明:四边形 ABCD为平行四边形的充要条件是对任一点 + OC = OB + OD1.3 数量乘矢量一、概念.数乘的例子.数乘的定义二、性质1.运算规律r r1 a = a

6、.(2)结合律,“阂)=(兀丹4.(3)第一分配律 (K+M) n =/+也., * r .(4)第二分配律 M Q +b )=总+通.例1.如图1-7,设M是平行四边形 ABCD勺中心,O是任意一点,证明例2.设点O是平面上正多边形 AAA的中心,证明:作业题:.设L、M N分别是AABC勺三边BC CA AB的中点,证明:三 电,加,CW可以构成一个三角形.E11-8.设L、M N是 ABC勺三边的中点,O是任意一点,证明+ =一 + _射+二;.用矢量法证明,四面体对棱中点的连线相交于一点且互相平分. 1.4矢量的线性关系与矢量的分解教学目的1、理解矢量在直线和平面及空间的分解定理;2、

7、掌握矢量间的线性相关性及判断方法。教学重,点:矢量的三个分解定理及线性相关的判断。教学难点 分解定理的证明参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延堂马世祥主编,兰州大学出版社,2000.08授课课时1一、矢量的分解.线性运算.线性组合.矢量在直线上的分解:,十rr t定理1如果矢量e卸,那么矢量r与矢量e共线的充要条件是r可以用矢量e线性表示,或者说r是。的线性组合,即F=x2,且系数x被g,唯一确定.g称为用线性组合来表示共线矢量的基底.矢量在平面上的分解:定理2 如果矢量ei,由不共线,那么矢量y与力,与共面的充要

8、条件是y可以用矢量4 , 0线性表示,或者说矢量r可以分解成矢量0 , 段的线性组合,即y =xei +y号 ,且系数x, y被力,号/唯一确定.0,当 称为平面上矢量的基底.矢量在空间的分解:定理3 如果矢量?当 ,与不共面,那么空间任意矢量T可以由矢量与,& ,0线性表示,或者说矢量T*!4!4!可以分解成矢量 与,鸟,斗的线性组合,即了 = xei +y01 +z% ,且系数x, y, z被马,有,马 , Y唯一确定.ei% ,号称为空间矢量的基底二、矢量的线性关系.定义h,使得对于n ( n1)个矢量41 , &,”一如果存在不全为零的n个数九h,使得+ 噌11 1 + 2+ n =-

9、,那么n个矢量% , %,,&叫做线性相关.矢量用 ,电,&线性无关是指,只有当 =0时,上式才成立.判断方法推论1一个矢量a线性相关的充要条件是 J=Q.定理4 矢量4,区,&(n2)线性相关的充要条件是其中有一个矢量是其余矢量的线性组合 TOC o 1-5 h z 定理5如果一组矢量中的一部分矢量线性相关,那么这一组矢量就线性相关推论2 一组矢量中如果含有零矢量,那么这组矢量必线性相关定理6 两矢量共线的充要条件是它们线性相关.定理7 三矢量共面的充要条件是它们线性相关.定理8 空间任何四个矢量总是线性相关 .推论3 空间四个以上矢量总是线性相关 .例1.设一直线上三点 A B, P满足疝

10、=兀两(九#1), O是空间任意一点, 求证:.OA-AOBOP = 1 + 4例2.在4ABC中,设A5 = ei , 40= % , AT是角A的平分线(它与 BC交于T点),试将分解为0 , &的线性组合.作业题:.在平行四边形ABCD设对角线 AC= a, BD = ,求 AB, BC, CD, DA ;(2)设边B的CD的中点为M和N,且刈/ = /,加=。,求B, CD.图 1-12.在 ABC43,设乂2=0 , A0= G2 , D E是边BC的三等分点,将矢量45 , 4上分解为k&的线性组合图 1-12.用矢量法证明:三角形三中线共点.设G是ABC勺重心,O是空间任意一点,

11、试证og = 3(oZ+Sb+oc).设?=L(i=1,2, 3, 4),试证Pi, P2, P3, P4四点共面的充要条件是存在不全为零的实数加(i=1,2, 3, 4)使1 : + 2 . + 3 . 1.5标架与坐标教学目的1、 能利用矢量建立坐标系概念;理解点的坐标及矢量分量的表示方法;掌握矢量线性运算及线段定比分点的坐标表示方法。教学重点标架概念及点和矢量的坐标表示方法教学难点矢量的分量 参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延堂马世祥主编,兰州大学出版社,2000.08授课课时 1一、空间坐标系.空间中的一

12、个定点o,连同三个不共面的有序矢量R,弓,斗的全体,叫做空间中的一个标架,记做O 一,乏力.对于标架O彳,囱多,如果& e ,%间的相互关系和右手拇指、食指、中指相同,那么这个标架叫7*做右旋标架或称右手标架;如果 % , % , &间的相互关系和左手的拇指、食指、中指相同,那么这个标架叫 做左旋标架或称左手标架.表达式? =x% +y& +z与中的x, y, z叫做矢量?关于标架O , 出 , 4 的分量或称为坐标,记做 户x, y, 4.O 一, 5.zx, y, 4.O 一, 5.p,矢量OP叫做点p,矢量OP叫做点p的径矢,径矢 OP关于标架对于取定了标架O%,内,%的空间中任意点 %

13、 , & 的分量x, y, z叫做点P关于标架O 0 , 内 , % 的坐标,记做P (x, y, z)或(x, y, z).当空间取定标架 O; ei ,与,& 之后,空间全体矢量的集合或者全体点的集合与全体有序三数组x, y, z的集合具有一一对应的关系,这种一一对应的关系叫做空间矢量或点的一个坐标系.空间坐标系也常用O彳,可 , & 来表示,此时点 O叫做坐标原点,可,句 ,当都叫做坐标矢量.6.由右(左)旋标架决定的坐标系叫做右 (左)旋坐标系或右(左)手坐标系;仿射标架、笛卡尔标架与直角 标架所确定的坐标系分别叫做仿射坐标系、笛卡尔坐标系与直角坐标系二、平面坐标系.约定用O i#表示

14、直角坐标系,以后在讨论空间问题时所采用的坐标系,一般都是空间右手直角 坐标系.K / 不.过点O沿着三坐标矢量 外,R,与的方向引三轴 Ox Oy, Oz,可以用这三条具有公共点O的不共面的轴Ox Oy, Oz来表示空间坐标系,记做 O x y z ,此时点O叫做空间坐标系的原点,三条轴 Ox Oy, Oz 都叫做坐标轴,且依次叫做x轴,y轴和z轴,每两条坐标轴所决定的平面叫做坐标面,分别叫做xOy平面,yOz平面与xOz平面.三坐标平面把空间划分为八个区域,每一个区域都叫做卦限.平面上一个定点 O连同两个不共线的有序矢量力 ,囱的全体,叫做平面上的一个标架,记做O彳,囱,如果彳,&都是单位矢

15、量,那么O彳,0 叫做笛卡尔标架;彳与&相互垂直的笛卡尔标架叫 做笛卡尔直角标架,简称直角标架;在一般情况下,Q0 ,4叫做仿射标架.对于标架 O % , 内 ,将与绕O旋转,使力的方向以最近的路径旋转到与 的方向相合时,如果旋 转方向是逆时针的,则这种标架叫做右旋标架或称右手标架;.表达式亍=x% +y与中的x, y叫做矢量区关于标架0% ,羯的分量或称为坐标,记做 x, y或x, y.6.对于取定了标架0 %, 的平面上的任意点 p,矢量0P叫做点 p的径矢,径矢 0P关于标架6.0,的分量x, y叫做点P关于标架0*囱的坐标,记做 Rx, y)或(x, y). TOC o 1-5 h z

16、 .当平面上取定标架0 0 ,&之后,平面上全体矢量的集合或者全体点的集合与全体有序数对x, y的集合具有对应的关系,这种对应的关系叫做平面上矢量或点的一个坐标系.平面坐标系也常用0彳,囱来表示,此时点 0叫做坐标原点,彳,&都叫做坐标矢量.由右(左)旋标架决定的坐标系叫做右 (左)旋坐标系或右(左)手坐标系;仿射标架、笛卡尔标架与直角 标架所确定的坐标系分别叫做仿射坐标系、笛卡尔坐标系与直角坐标系15.约定用0;7,J表示直角坐标系,在讨论平面问题时所采用的坐标系,一般都是平面右手直角坐标系9.过点0沿着坐标矢量马,的方向引二轴 0 x 0y可以用这二条具有公共点 0的不共线的轴 0 x 0

17、y 来表示平面坐标系,记做 0-x y ,此时点0叫做平面坐标系的原点,0 x叫做x轴,0y叫做y轴.两坐标轴把平面分成四个区域,每一个区域都叫做象限三、直线坐标系.直线上一个定点 Q连同直线上一个非零矢量 艺的全体,叫做直线上的一个标架,记做0露,如果声为单位矢量,那么0营叫做笛卡尔标架,在一般情况下,0孑叫做仿射标架.表达式=x声中的x叫做矢量关于标架0 2的分量或称为坐标,记做 fx或x.OP关于标架的分量x叫做.对于取定了标架0声的直线上任意点 P,矢量0P叫做点P的径矢,径矢 点P关于标架07的坐标,记做 R x)或OP关于标架的分量x叫做.当直线上取定标架0声之后,直线上全体矢量的

18、集合或全体点的集合与全体实数x的集合具有对应的关系,这种一一对应的关系叫做直线上矢量或点的一个坐标系.直线上的坐标系也常用0声来表示,此时点0叫做坐标原点,声叫做坐标矢量. TOC o 1-5 h z .由仿射标架与笛卡尔标架所确定的坐标系分别叫做仿射坐标系与笛卡尔坐标系.取定标架0 的直线,叫做坐标轴或简称为轴,原点为 Q坐标写成x的轴记做0 xh 7工例1.在空间直角坐标系0,,j#下,求P(2,-3,-1),M(a,b,c)关于(1)坐标平面;(2)坐标轴;(3)坐标原点的各个对称点的坐标.r r f例2.已知矢量fl , b, C的分量如下:rr-a=0, -1,2 , i=0, 2,

19、4, c =1,2,1;a=1,2, 3, h =2, -1,0 , c=0, 5, 6.rr r试判别它们是否共面?能否将e表成4, 6的线性组合?若能表示,写出表示式.作业题:.指出坐标满足下列条件的点(x, y, z)在空间白位置.x=y;(2) y z0;(3) x y z 0.平行于z轴的矢量有什么特点?平行于 x轴和y轴的矢量又分别有什么特点?.已知线段AB被点C(2, 0, 2)和D(5, -2, 0)三等分,试求这个线段两端点A与B的坐标. 1.6矢量在轴上的射影教学 目的1、 掌握射影与射影矢量的概念及矢量线性运算的射影表示;2、 理解矢量在轴上的的射影与坐标的关系。教学重点

20、矢量在轴上的射影与射影矢量的概念教学难点射影与射影矢量的关系参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延堂马世祥主编,兰州大学出版社, 2000.08授课课时1一、概念.射影.射影矢量.如果在轴上取与轴方向相同的单位矢量e ,则有射影矢量I屈二#炉=xg ,其中x叫做矢量 麻在轴i上的射影,记作:射影i戒 即射影iJtR=x.-9.9.9.可以把射影矢量i处与射影i如分别写成射影矢量g 4B与射影g 乂8,且分别叫做矢量 如在矢量g 一上的射影矢量与川B在g上的射影,两者之间的关系是射影矢量eB =(射影g .设立占是两个

21、非零矢量,自空间任意点O作0X =鼠OB = j 把射线OA和OB勾成白在0与TT之间的角,叫做矢量,与1的夹角,记做/(4,;).按规定,若凯力同向,则4? ,)=0;若?花反向,则/(鼠片) =冗;若7/才,则0 兀,这时我们认为相差 2兀整数倍的值代表同一角,对于有向角还有下面的等式二、性质.矢量 疝在轴l上的射影等于矢量的模乘以轴与该矢量的夹角的余弦:射影 i/ = i 晒icos a e= z(i JIF).相等矢量在同一轴上的射影相等 .对于任何矢量方,占有射影1(7+力=射影il+射影了.对于任何矢量?与任意实数,有射影i(后)=7射影i才.作业题:.两非零矢量的夹角在空间和平面

22、上分别是怎样定义的?取值范围如何?.在射影I a ,射影矢量e a与射影/ a,射影矢量d?中,若7 e = -6,则它们相互间的关系 如何?3.射影相等的两个矢量是否必相等?射影为0的矢量,是否必为0 ? 1.7两矢量的数性积教学目的1、掌握矢量的数性积概念及几何意义;理解矢量的模、方向余弦和交角及数性积的坐标表示;能证明有关的几何命题。教学重点两矢量的数性积概念及几何意义教学难点 根据数性积理论证明有关的命题参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延堂马世祥主编,兰州大学出版社,2000.08授课课时 1一、概念.数

23、性积白例子. r rr rr r.两个矢量4与b的模和它们夹角的余弦的乘积叫做矢量口和占的数性积(也称数积,内积,点积),记做a i或八,即 r r r rr ra 6 =田而cos (a 3).二、性质. a 1 = wi射影41 = |小射影. -F 一- F.当e为单位矢量时 a e =射影.a. r r r r. a q = mi2=q2. r rr r.两矢量仪和力相互垂直的充要条件是 a 2 = 0.矢量的数性积满足下面的运算规律r r r r(i)交换律a b = b a. rrrr rr(2)关于数因子的结合律(a)b =(ab)=a( b).分配律s+2)c =a +b c.

24、三、坐标运算.设仪=&1,Z, = 不明Z,则a 1处+电+陷.r.设日=X, Y Z,则iJi = .+P+F.空间两点Pi( xi, yi, zi) , P2( X2, y2, Z2)间的距离是d = J(一一 五) +( ) + ), TOC o 1-5 h z .矢量与坐标轴(或坐标矢量)所成的角叫做矢量的方向角,方向角的余弦叫做矢量的方向余弦r.非零矢量口 =X Y Z的方向余弦是X Xcos 0(=+ * +Z:,yycos P= |廿 I =,zzcos /= |0| = JY + P+Z.设空间中两个非零矢量为 &F俑, k&F山,那么它们夹角的余弦是ai 砧+空产cos4g

25、, )=团IW = 厨+斗+2;料+小吗.矢量&升陷4和 =X2相互垂直的充要条件是南+17?+2诙=0例1.在实数乘法中消去律成立,即ab= ac时,则a=0氤b=c.这对矢量的数性积并不成立,举反例如下: TOC o 1-5 h z 如图1-20 ,设有非零矢量a及与其共面的两矢量 寸和7 ,使得其终点连线 BC与OA/ 月垂直且交于M则白占=| 4 | 3 |cos N( 4 ,卜)=| M | OMIQ = I * II * |cos /(,)=|。| OM|于是胃5 =,F,但显然Rm.。/千+图 im例2.在平面上如果 叫泼啊 ,且2 一%=力用!( i= 1,2),则有a = b

26、.作业题:.用矢量法证明对角线互相垂直的平行四边形是菱形f t r t r -.证明-| fl | i | d A AM片4a焉=占居z J.与中学代数里的方程一样,我们将含有未知矢量的等式叫做矢量方程.例如?声=i,其中I是已知矢量,M是未知矢量,i是常数,这就是一个矢量方程.解矢量方程常用两种方法:其一是对方程实行各种向量运算来求出未知向量;其二是利用坐标化成代数方程再去求解例1.证明(口父)2w n2 62,并说明在什么情形下等号成立.例2.证明如果+C = ,那么n $ =寸y = c 3 ,并说明它的几何意义.例4.用矢量方法证明:(1)三角形的正弦定理 . b c = sin/?

27、= sinC*.(2)三角形面积的海伦(Heron)公式,即三斜求积公式: 2A = p(pa)( pb)( pc).作业题:.设仪,b,1为三个两两不共线的矢量,且 =c =cxa =4,则n+6+c =C.设两非零矢量 码总取,求k值,使两个向量 Hi + 玖和 +k4共线. * 1 - .已知两非零矢量匕,求Q+与与共线的充要条件.一 F JTI -J*(4,8) =4.已知, AD=a-的,其中口 =5, I昨3, /6 ,求平行四边形abcd的面积.1.9 三矢量的混合积教学目的 1 、掌握矢量的混合积概念及几何意义; 2 、理解混合积的运算律及坐标表示;3、会用顶点坐标计算四面体的

28、体积。教学重点三矢量混合积概念及几何意义教学难点混合积的几何意义参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社, 2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社, 2000.08授课课时1第二章 轨迹与方程教学目的 1 、理解曲面与空间曲线方程的意义;2、掌握求轨迹方程(矢量式与坐标式参数方程及普通方程)的方法;3、会判断已知方程所表示的轨迹名称。教学重点曲面和空间曲线的方程求法教学难点判断已知的参数方程或普通方程所表示的图形参考文献(1)解析几何(第三版) ,吕林根 许子道 等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延

29、堂 马世祥主编,兰州大学出版社, 2000.08解析几何课程教案(第三章)授课课时8第三章 平面与空间直线教学目的 1 、 深刻理解在空间直角坐标系下平面方程是一个关于x,y,z 的三元一次方程;反过来任何一个关于 x,y,z 的三元一次方程都表示一个平面。 直线可以看成两个平面的交线, 它可以用两个相交平面的方程构成的方程组来表示;掌握平面与空间直线的各种形式的方程,明确方程中常数(参数)的几何意义,能根据决定平面或决定直线的各种导出它们的方程,并熟悉平面方程的各种形式的互化与直线各种方程形式的互化;能熟练地根据平面和直线的方程以及点的坐标判别有关点、平面、直线之间的位置关系与计算它们之间的

30、距离和交角。教学重点平面与空间直线的方程求法及点、平面、直线之间的相关位置教学难点平面与空间直线各种形式方程的互化参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社, 2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社, 2000.08授课课时83.1 平面的方程教学目的 1 、理解在空间直角坐标系下平面方程是一个关于 x,y,z 的三元一次方程,反过来,任何一个关于 x,y,z 的三元一次方程都表示一个平面;2、会求平面的各种方程(参数式、点位式、三点式、截距式、一般式、点法式及法式) ;3、掌握平面的一般式与法式方程的互化。教学重点平面的点位式、

31、一般式和法式方程及其转化方法教学难点平面各种方程之间的互化参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社, 2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社, 2000.08授课课时13.2 平面与点的相关位置 3.3 两平面的相关位置教学目的1 、理解点与平面的离差与距离概念及求法;2、掌握判别点与平面、两平面位置关系的方法; 3 、会求两平面的交角与距离。教学重点点与平面的离差和两平面的位置关系教学难点 点与平面的离差参考文献(1) 解析几何(第三版) ,吕林根 许子道 等编,高等教育出版社, 2001.06 (2)解析几何思考与训练,梁延

32、堂 马世祥主编,兰州大学出版社, 2000.08授课课时2空间直线的方程教学目的 1 、理解直线的方向角、方向余弦、方向数概念及求法;2、会求直线的点向式方程(参数式、对称式、两点式)和一般方程;3、掌握直线的标准方程与一般方程转化方法。教学重点直线的标准方程与一般方程教学难点标准方程与一般方程的转化方法参考文献(1)解析几何(第三版) ,吕林根 许子道 等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社, 2000.08授课课时2直线与平面的相关位置教学目的 1 、理解直线与平面的位置关系及判别方法;2、掌握直线与平面的交角和距离的求法。教学重点

33、直线与平面的位置关系教学难点直线与平面的交角参考文献(1)解析几何(第三版) ,吕林根 许子道 等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社, 2000.08授课课时3.6 空间两直线的相关位置教学目的1 、理解空间两直线的位置关系及判别方法;2、掌握空间两直线的交角和异面直线间的距离与公垂线方程的求法。教学重点空间两直线的位置关系及判别方法教学难点异面直线间的距离与公垂线方程参考文献(1) 解析几何(第三版) ,吕林根 许子道 等编,高等教育出版社, 2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社, 2000.0

34、8授课课时2空间直线与点的相关位置 3.8 平面束教学目的 1 、理解两种平面束的概念;2、掌握空间直线与点的距离公式及平面束方程的求法。教学重点平面束的概念及平面束方程的求法教学难点空间直线与点的距离公式参考文献(1)解析几何(第三版) ,吕林根 许子道 等编,高等教育出版社, 2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社, 2000.08解析几何课程教案(第四章)授课课时2第四章 柱面、锥面、旋转曲面与二次曲面教学目的 1 、 掌握求柱面、锥面、旋转曲面方程的一般方法和步骤;能识别母线平行坐标轴的柱面方程和以坐标轴为旋转轴的旋转面方程, 并能从方程认识曲面的大

35、致形状;根据方程讨论图形性质,能画二次曲面、空间曲线及区域简图;了解曲面直纹性。教学重点1 、 柱面、锥面、旋转曲面的概念及方程求法;椭球面、双曲面、抛物面方程的讨论,图形性质和形状的画法。教学难点根据二次曲面的方程和性质画出其图形参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社, 2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社, 2000.08授课课时8柱面4.1柱面教学目的 1 、理解柱面及其准线和母线的概念;2 、掌握求柱面方程的一般方法及步骤。教学重点柱面方程的求法教学难点圆柱面的方程参考文献(1)解析几何(第三版),吕林根 许子道 等

36、编,高等教育出版社, 2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社, 2000.08授课课时1锥面4.2锥面教学目的1 、理解锥面及其准线和母线的概念;2、掌握求锥面方程的一般方法及步骤;3 、了解齐次方程概念及其表示的锥面性质。教学重点锥面方程的求法教学难点圆锥面的方程参考文献(1)解析几何(第三版) ,吕林根 许子道 等编,高等教育出版社, 2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社, 2000.08授课课时1旋转曲面4.3旋转曲面教学目的1 、理解旋转曲面及母线和纬圆等概念;2、掌握求旋转曲面方程的一般方法及步骤;3、能熟练写

37、出一类特殊旋转曲面的方程。教学重点旋转曲面方程求法教学难点一类特殊旋转曲面的方程参考文献(1)解析几何(第三版) ,吕林根 许子道 等编,高等教育出版社, 2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社, 2000.08授课课时1椭球面教学目的1 、会认椭球面的标准方程;2、掌握讨论椭球面性质的方法及步骤;3 、能熟练画出椭球面图形。教学重点椭球面的标准方程及性质教学难点椭球面图形的画法参考文献(1)解析几何(第三版) ,吕林根 许子道 等编,高等教育出版社, 2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社, 2000.08授课课时1双曲

38、面教学目的 1 、会认单叶双曲面和双叶双曲面的标准方程;2、掌握单叶双曲面和双叶双曲面的性质;3、能熟练画出单叶双曲面和双叶双曲面的图形。教学重点单叶双曲面和双叶双曲面的标准方程及性质教学难点单叶双曲面和双叶双曲面图形的画法参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社, 2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社, 2000.08授课课时2抛物面教学目的1 、会认椭圆抛物面和双曲抛物面的标准方程;2、掌握椭圆抛物面和双曲抛物面的性质;3、能画出椭圆抛物面和双曲抛物面的图形。教学重点椭圆抛物面和双曲抛物面的标准方程及性质教学难点椭圆抛物面

39、和双曲抛物面图形的画法参考文献(1)解析几何(第三版) ,吕林根 许子道 等编,高等教育出版社, 2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社, 2000.08授课课时2曲面的直纹性教学目的 1 、理解直纹曲面的概念;2、掌握单叶双曲面和双曲抛物面的直母线方程求法;3、了解单叶双曲面和双曲抛物面的直母线性质。教学重点直纹曲面的概念教学难点单叶双曲面和双曲抛物面的直母线方程求法参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社, 2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社, 2000.08解析几何课程教案(第五章)

40、授课课时第五章 二次曲线的一般理论教学目的 1 、了解复平面的特征;2、掌握二次曲线的渐近方向、中心、渐近线、切线、直径、主方向和主直径概念及求法;弄清移轴变换和转轴变换对二次曲线方程系数的影响规律, 以及这两种坐标变换在化简二次曲线方程中所起的作用;4、能判别二元二次方程所表示的曲线的类型,熟练地化简二次曲线方程,并写出相应变换关系式,作出其图形。教学重点1 、二次曲线由渐近方向、中心、标准方程得出的不同分类方法;2、二次曲线方程的化简、分类与作图。教学难点移轴变换和转轴变换对二次曲线方程系数的影响规律及其在化简二次曲线方程中所起的作用。参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社, 2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社, 2000.08授课课时8二次曲线与直线的相关位置5.1二次曲线与直线的相关位置教学目的 1 、了解复平面的特征;2、熟记二次曲线方程中的有关记号;3、 掌握二次曲线与直线的相关位置及判别方法。教学重点二次曲线方程中的有关记号及二次曲线与直线的相关位置教学难点二次曲线与直线位置的判别方法参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社, 2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社, 2000.085

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论