2022届辽宁省沈阳市一三考数学适应性模拟试题含解析_第1页
2022届辽宁省沈阳市一三考数学适应性模拟试题含解析_第2页
2022届辽宁省沈阳市一三考数学适应性模拟试题含解析_第3页
2022届辽宁省沈阳市一三考数学适应性模拟试题含解析_第4页
2022届辽宁省沈阳市一三考数学适应性模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在RtABC中,ACB=90,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将 绕点D旋转180后点B与点A恰好重合,则图中阴影部分的面积为()ABCD2若实数m满足,则下列对m值的估计正确的是()A2m1B1m

2、0C0m1D1m23如图,在ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD若B=40,C=36,则DAC的度数是()A70B44C34D244如图是一个由4个相同的正方体组成的立体图形,它的左视图为( )ABCD5如图,ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()A相切B相交C相离D无法确定6如图,在正五边形ABCDE中,连接BE,则ABE的度数为( )A30B36C54D727太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km都需付8元车费),超过3km以后,每增加1km,加收1.6元(不足1

3、km按1km计),某人从甲地到乙地经过的路程是xkm,出租车费为16元,那么x的最大值是()A11B8C7D58学完分式运算后,老师出了一道题“计算:”.小明的做法:原式;小亮的做法:原式;小芳的做法:原式其中正确的是( )A小明B小亮C小芳D没有正确的9若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()ABCD10如图,RtABC中,C=90,AC=4,BC=4,两等圆A,B外切,那么图中两个扇形(即阴影部分)的面积之和为()A2B4C6D811已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )ABCD12古希腊著名的毕达

4、哥拉斯学派把1,3,6,10这样的数称为“三角形数”,而把1,4,9,16这样的数称为“正方形数”从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和下列等式中,符合这一规律的是()A133+10B259+16C3615+21D4918+31二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,已知等腰直角三角形 ABC 的直角边长为 1,以 RtABC 的斜边 AC 为直角 边,画第二个等腰直角三角形 ACD,再以 RtACD 的斜边 AD 为直角边,画第三个等腰直 角三角形 ADE依此类推,直到第五个等腰直角三角形 AFG,则由这五个等腰直角三角形所构成

5、的图形的面积为_14若关于x的方程=0有增根,则m的值是_15因式分解:a2b2abb 16已知抛物线yx2mx2m,在自变量x的值满足1x2的情况下若对应的函数值y的最大值为6,则m的值为_.17如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为_18已知:正方形 ABCD求作:正方形 ABCD 的外接圆 作法:如图,(1)分别连接 AC,BD,交于点 O;(2)以点 O 为圆心,OA 长为半径作O,O 即为所求作的圆请回答:该作图的依据是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)先化简再求值:(1),其中x20(6分)

6、如图,梯形ABCD中,ADBC,DCBC,且B=45,AD=DC=1,点M为边BC上一动点,联结AM并延长交射线DC于点F,作FAE=45交射线BC于点E、交边DCN于点N,联结EF(1)当CM:CB=1:4时,求CF的长(2)设CM=x,CE=y,求y关于x的函数关系式,并写出定义域(3)当ABMEFN时,求CM的长21(6分)如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD(1)求证:EB=GD;(2)若AB=5,AG=2,求EB的长22(8分)如图,已知ABC中,ACB90,D是边AB的中点,P是边AC上一动点

7、,BP与CD相交于点E(1)如果BC6,AC8,且P为AC的中点,求线段BE的长;(2)联结PD,如果PDAB,且CE2,ED3,求cosA的值;(3)联结PD,如果BP22CD2,且CE2,ED3,求线段PD的长23(8分)我市某中学决定在八年级阳光体育“大课间”活动中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图的统计图请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)将两个统计图补充完整;(3)若调查到喜欢“立定跳远”的5名学生中有3名男生,2名女生现从这5名学生中

8、任意抽取2名学生请用画树状图或列表的方法,求出刚好抽到同性别学生的概率24(10分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图(1)测试不合格人数的中位数是 (2)第二次测试合格人数为50人,到第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,若这两次测试的平均增长率相同,求平均增长率;(3)在(2)的条件下补全条形统计图和扇形统计图25(10分)如图,ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求ABC的面积26(12分)(1)如图1,半径为2的圆O内有一点P,切OP=1,弦

9、AB过点P,则弦AB长度的最大值为_;最小值为 _.图 (2)如图2,ABC是葛叔叔家的菜地示意图,其中ABC=90,AB=80米,BC=60米,现在他利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘已知葛叔叔想建的鱼塘是四边形ABCD,且满足ADC=60,你认为葛叔叔的想法能实现吗?若能,求出这个四边形鱼塘面积和周长的最大值;若不能,请说明理由图 27(12分)已知ABC 中,AD 是BAC 的平分线,且 AD=AB,过点 C 作 AD 的垂线,交 AD 的延长线于点 H(1)如图 1,若BAC=60直接写出B 和ACB 的度数;若 AB=2

10、,求 AC 和 AH 的长;(2)如图 2,用等式表示线段 AH 与 AB+AC 之间的数量关系,并证明参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可【详解】解:由旋转可知AD=BD,ACB=90,AC=2,CD=BD,CB=CD,BCD是等边三角形,BCD=CBD=60,BC=AC=2,阴影部分的面积=222=2.故选:B.【点睛】本题考查了旋转的性质与扇形面积的计算,解题的关键是熟练的掌握旋转的性质与扇形面积的计算.2、A【解析】试题解析:,m2+2

11、+=0,m2+2=-,方程的解可以看作是函数y=m2+2与函数y=-,作函数图象如图,在第二象限,函数y=m2+2的y值随m的增大而减小,函数y=-的y值随m的增大而增大,当m=-2时y=m2+2=4+2=6,y=-=-=2,62,交点横坐标大于-2,当m=-1时,y=m2+2=1+2=3,y=-=-=4,34,交点横坐标小于-1,-2m-1故选A考点:1.二次函数的图象;2.反比例函数的图象3、C【解析】易得ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出DAC【详解】AB=BD,B=40,ADB=70,C=36,DAC=ADBC=34故选C.【点睛】本题考查三角形的角度计算

12、,熟练掌握三角形外角性质是解题的关键.4、B【解析】根据左视图的定义,从左侧会发现两个正方形摞在一起.【详解】从左边看上下各一个小正方形,如图故选B5、B【解析】首先过点A作AMBC,根据三角形面积求出AM的长,得出直线BC与DE的距离,进而得出直线与圆的位置关系【详解】解:过点A作AMBC于点M,交DE于点N,AMBC=ACAB,AM=2.1D、E分别是AC、AB的中点,DEBC,DE=BC=2.5,AN=MN=AM,MN=1.2以DE为直径的圆半径为1.25,r=1.251.2,以DE为直径的圆与BC的位置关系是:相交故选B【点睛】本题考查了直线和圆的位置关系,利用中位线定理得出BC到圆心

13、的距离与半径的大小关系是解题的关键6、B【解析】在等腰三角形ABE中,求出A的度数即可解决问题【详解】解:在正五边形ABCDE中,A=(5-2)180=108又知ABE是等腰三角形, AB=AE,ABE=(180-108)=36故选B【点睛】本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单7、B【解析】根据等量关系,即(经过的路程3)1.6+起步价2元1列出不等式求解【详解】可设此人从甲地到乙地经过的路程为xkm,根据题意可知:(x3)1.6+21,解得:x2即此人从甲地到乙地经过的路程最多为2km故选B【点睛】考查了一元一次方程的应用关键是掌握正

14、确理解题意,找出题目中的数量关系8、C【解析】试题解析: = =1所以正确的应是小芳故选C9、D【解析】根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案【详解】根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,A、,错误;B、,错误;C、,错误;D、,正确;故选D【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变此题比较简单,但计算时一定要细心10、B【解析】先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由A+B=90可知阴影部分的面积等于一个圆的面积的【详解】在ABC中,依据勾股定理可知AB=8,两

15、等圆A,B外切,两圆的半径均为4,A+B=90,阴影部分的面积=4故选:B【点睛】本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键11、D【解析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可【详解】由题意得,2x+y=10,所以,y=-2x+10,由三角形的三边关系得,解不等式得,x2.5,解不等式的,x5,所以,不等式组的解集是2.5x5,正确反映y与x之间函数关系的图象是D选项图象故选:D12、C【解析】本题考查探究、归纳的数学思想方法题中明

16、确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值【详解】A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和故选:C【点睛】此题是一道找规律的题目,这类题型在中考中经常出现对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的二、填空题:(本大题共6个小题,每小题4分,共24分)13、12.2【解析】ABC是边长为1的等腰直角三角形,SABC=11=

17、11-1;AC=,AD=1,SACD=1=11-1第n个等腰直角三角形的面积是1n-1SAEF=14-1=4,SAFG=12-1=8,由这五个等腰直角三角形所构成的图形的面积为+1+1+4+8=12.2故答案为12.214、2【解析】去分母得,m-1-x=0.方程有增根,x=1, m-1-1=0, m=2.15、b2【解析】该题考查因式分解的定义首先可以提取一个公共项b,所以a2b2abbb(a22a1)再由完全平方公式(x1+x2)2=x12+x22+2x1x2所以a2b2abbb(a22a1)=b216、m=8或-【解析】求出抛物线的对称轴x=-b2a=【详解】抛物线的对称轴x=-b当m2

18、-1,即m2,即m4时,抛物线在1x2时,y随x的增大而增大,在x=2时取得最大值,即y=-2综上所述,m的值为8或-故答案为:8或-【点睛】考查二次函数的图象与性质,注意分类讨论,不要漏解.17、【解析】利用勾股定理求出斜边长,再利用面积法求出斜边上的高即可【详解】解:直角三角形的两条直角边的长分别为5,12,斜边为=13,三角形的面积=512=13h(h为斜边上的高),h=故答案为:【点睛】考查了勾股定理,以及三角形面积公式,熟练掌握勾股定理是解本题的关键18、正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆【

19、解析】利用正方形的性质得到 OA=OB=OC=OD,则以点O为圆心,OA长为半径作O,点B、C、D都在O 上,从而得到O 为正方形的外接圆【详解】四边形 ABCD 为正方形,OA=OB=OC=OD,O 为正方形的外接圆故答案为正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆【点睛】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作三、解答题:(本大题共9个小题,

20、共78分,解答应写出文字说明、证明过程或演算步骤19、【解析】分析:根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题详解:原式= =当时,原式=点睛:本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法20、 (1) CF=1;(2)y=,0 x1;(3)CM=2【解析】(1)如图1中,作AHBC于H首先证明四边形AHCD是正方形,求出BC、MC的长,利用平行线分线段成比例定理即可解决问题;(2)在RtAEH中,AE2=AH2+EH2=12+(1+y)2,由EAMEBA,可得,推出AE2=EMEB,由此构建函数关系式即可解决问题;(3)如图2中,作

21、AHBC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG想办法证明CM=CN,MN=DN+HM即可解决问题;【详解】解:(1)如图1中,作AHBC于HCDBC,ADBC,BCD=D=AHC=90,四边形AHCD是矩形,AD=DC=1,四边形AHCD是正方形,AH=CH=CD=1,B=45,AH=BH=1,BC=2,CM=BC=,CMAD,=,=,CF=1(2)如图1中,在RtAEH中,AE2=AH2+EH2=12+(1+y)2,AEM=AEB,EAM=B,EAMEBA,=,AE2=EMEB,1+(1+y)2=(x+y)(y+2),y=,22x0,0 x1(3)如图2中,作AHBC于H

22、,连接MN,在HB上取一点G,使得HG=DN,连接AG则ADNAHG,MANMAG,MN=MG=HM+GH=HM+DN,ABMEFN,EFN=B=45,CF=CE,四边形AHCD是正方形,CH=CD=AH=AD,EH=DF,AHE=D=90,AHEADF,AEH=AFD,AEH=DAN,AFD=HAM,HAM=DAN,ADNAHM,DN=HM,设DN=HM=x,则MN=2x,CN=CM=x,x+x=1,x=1,CM=2【点睛】本题考查了正方形的判定与性质,平行线分线段成比例定理,勾股定理,相似三角形的判定与性质,全等三角形的判定与性质.熟练运用平行线分线段成比例定理是解(1)的关键;证明EAM

23、EBA是解(2)的关键;综合运用全等三角形的判定与性质是解(3)的关键.21、(1)证明见解析;(2) ;【解析】(1)根据正方形的性质得到GAD=EAB,证明GADEAB,根据全等三角形的性质证明;(2)根据正方形的性质得到BDAC,AC=BD=5,根据勾股定理计算即可【详解】(1)在GAD和EAB中,GAD=90+EAD,EAB=90+EAD,GAD=EAB,在GAD和EAB中,GADEAB,EB=GD; (2)四边形ABCD是正方形,AB=5,BDAC,AC=BD=5,DOG=90,OA=OD=BD=,AG=2 ,OG=OA+AG=,由勾股定理得,GD=,EB=【点睛】本题考查的是正方形

24、的性质、全等三角形的判定和性质,掌握正方形的对角线相等、垂直且互相平分是解题的关键22、(1)(2)(3) .【解析】(1)由勾股定理求出BP的长, D是边AB的中点,P为AC的中点,所以点E是ABC的重心,然后求得BE的长.(2)过点B作BFCA交CD的延长线于点F,所以,然后可求得EF=8,所以,所以,因为PDAB,D是边AB的中点,在ABC中可求得cosA的值.(3)由,PBD=ABP,证得PBDABP,再证明DPEDCP得到,PD可求.【详解】解:(1)P为AC的中点,AC=8,CP=4,ACB=90,BC=6,BP=,D是边AB的中点,P为AC的中点,点E是ABC的重心,(2)过点B

25、作BFCA交CD的延长线于点F,BD=DA,FD=DC,BF=AC,CE=2,ED=3,则CD=5,EF=8,,设CP=k,则PA=3k,PDAB,D是边AB的中点,PA=PB=3k,,,(3)ACB=90,D是边AB的中点,,,,PBD=ABP,PBDABP,BPD=A,A=DCA,DPE=DCP,PDE=CDP,DPEDCP,,DE=3,DC=5,.【点睛】本题是一道三角形的综合性题目,熟练掌握三角形的重心,三角形相似的判定和性质以及三角函数是解题的关键.23、 (1)50名;(2)补图见解析;(3) 刚好抽到同性别学生的概率是【解析】试题分析:(1)由题意可得本次调查的学生共有:1530

26、%;(2)先求出C的人数,再求出C的百分比即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到同性别学生的情况,再利用概率公式即可求得答案试题解析:(1)根据题意得: 1530%50(名)答;在这项调查中,共调查了50名学生;(2)图如下:(3)用A表示男生,B表示女生,画图如下:共有20种情况,同性别学生的情况是8种,则刚好抽到同性别学生的概率是24、(1)1;(2)这两次测试的平均增长率为20%;(3)55%【解析】(1)将四次测试结果排序,结合中位数的定义即可求出结论;(2)由第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,可求出第四次测试合格人数,

27、设这两次测试的平均增长率为x,由第二次、第四次测试合格人数,即可得出关于x的一元二次方程,解之取其中的正值即可得出结论;(3)由第二次测试合格人数结合平均增长率,可求出第三次测试合格人数,根据不合格总人数参加测试的总人数100%即可求出不合格率,进而可求出合格率,再将条形统计图和扇形统计图补充完整,此题得解【详解】解:(1)将四次测试结果排序,得:30,40,50,60,测试不合格人数的中位数是(40+50)21故答案为1;(2)每次测试不合格人数的平均数为(60+40+30+50)41(人),第四次测试合格人数为121872(人)设这两次测试的平均增长率为x,根据题意得:50(1+x)272

28、,解得:x10.220%,x22.2(不合题意,舍去),这两次测试的平均增长率为20%;(3)50(1+20%)60(人),(60+40+30+50)(38+60+50+40+60+30+72+50)100%1%,11%55%补全条形统计图与扇形统计图如解图所示【点睛】本题考查了一元二次方程的应用、扇形统计图、条形统计图、中位数以及算术平均数,解题的关键是:(1)牢记中位数的定义;(2)找准等量关系,正确列出一元二次方程;(3)根据数量关系,列式计算求出统计图中缺失数据25、3【解析】试题分析:根据AB=30,BD=6,AD=8,利用勾股定理的逆定理求证ABD是直角三角形,再利用勾股定理求出C

29、D的长,然后利用三角形面积公式即可得出答案试题解析:BD3+AD3=63+83=303=AB3,ABD是直角三角形,ADBC,在RtACD中,CD=,SABC=BCAD=(BD+CD)AD=338=3,因此ABC的面积为3答:ABC的面积是3考点:3勾股定理的逆定理;3勾股定理26、(1)弦AB长度的最大值为4,最小值为2;(2)面积最大值为(2500+2400)平方米,周长最大值为340米.【解析】(1)当AB是过P点的直径时,AB最长;当ABOP时,AB最短,分别求出即可.(2)如图在ABC的一侧以AC为边做等边三角形AEC,再做AEC的外接圆,则满足ADC=60的点D在优弧AEC上(点D不与A、C重合),当D与E重合时,SADC最大值=SAEC,由SABC为定值,故此时四边形ABCD的面积最大,再根据勾股定理和等边三角形的性质求出此时的面积与周长即可.【详解】(1)(1)当AB是过P点的直径时,AB最长=2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论