版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)16的绝对值是( )A6B6CD2一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( )A和B谐C凉D山3如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角是45,旗杆低端
2、D到大楼前梯砍底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为( )(精确到0.1米,参考数据:) A30.6米B32.1 米C37.9米D39.4米4已知二次函数yax2+bx+c(a0)的图象如图所示,则下列结论: abc0; 2ab0; b24ac0; 9a+3b+c0; c+8a0.正确的结论有().A1个B2个C3个D4个518的倒数是()A18B18C-D6把三角形按如图所示的规律拼图案,其中第个图案中有1个三角形,第个图案中有4个三角形,第个图案中有8个三角形,按此规律排列下去,则第个图案中三角形的个数为()A15B17C19D247已知一元二
3、次方程1(x3)(x+2)=0,有两个实数根x1和x2(x1x2),则下列判断正确的是( )A2x1x23Bx123x2C2x13x2Dx12x238如图,DE是线段AB的中垂线,则点A到BC的距离是A4BC5D69在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能是多边形的是( )A圆锥B圆柱C球D正方体10大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉( )A6.5千克 B7.5千克 C8.5千克 D9.5千克二、填空题(共7小题,每小题3分,满分21分)11若关于x的函数与x轴仅有一个公共点,则实数k的值为 .12
4、若关于的一元二次方程有实数根,则的取值范围是_13化简二次根式的正确结果是_14把16a3ab2因式分解_15已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2_S乙2(填“”、“=”、“”)16如图,是用三角形摆成的图案,摆第一层图需要1个三角形,摆第二层图需要3个三角形,摆第三层图需要7个三角形,摆第四层图需要13个三角形,摆第五层图需要21个三角形,摆第n层图需要_个三角形17如图,O的半径OD弦AB于点C,连结AO并延长交O于点E,连结EC若AB8,CD2,则EC的长为_三、解答题(共7小题,满分69分)18(10分)如图,ABC中,AB=AC,以AB
5、为直径的O与BC相交于点D,与CA的延长线相交于点E,过点D作DFAC于点F(1)试说明DF是O的切线;(2)若AC=3AE,求tanC19(5分)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,-23)(1)求抛物线的表达式(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动设S=PQ2(cm2)试求出S与运动时间t之间的函数关系式,并写出t的取值范围;当S取54时,在抛物线
6、上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标20(8分)如图,ABC与A1B1C1是位似图形(1)在网格上建立平面直角坐标系,使得点A的坐标为(6,1),点C1的坐标为(3,2),则点B的坐标为_;(2)以点A为位似中心,在网格图中作AB2C2,使AB2C2和ABC位似,且位似比为12;(3)在图上标出ABC与A1B1C1的位似中心P,并写出点P的坐标为_,计算四边形ABCP的周长为_21(10分)某保健品厂每天生产A,B两种品牌的保健品共600瓶,
7、A,B两种产品每瓶的成本和利润如表,设每天生产A产品x瓶,生产这两种产品每天共获利y元(1)请求出y关于x的函数关系式;(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?(3)该厂每天生产的A,B两种产品被某经销商全部订购,厂家对A产品进行让利,每瓶利润降低元,厂家如何生产可使每天获利最大?最大利润是多少?AB成本(元/瓶)5035利润(元/瓶)201522(10分)抛物线yx2+bx+c经过点A、B、C,已知A(1,0),C(0,3)求抛物线的解析式;如图1,抛物线顶点为E,EFx轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若MNC90,请指出实数m的变化范
8、围,并说明理由如图2,将抛物线平移,使其顶点E与原点O重合,直线ykx+2(k0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标23(12分)问题:将菱形的面积五等分小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题如图,点O是菱形ABCD的对角线交点,AB5,下面是小红将菱形ABCD面积五等分的操作与证明思路,请补充完整(1)在AB边上取点E,使AE4,连接OA,OE;(2)在BC边上取点F,使BF_,连接OF;(3)在CD边上取点G,使CG_,连接OG;(4)在DA边上取点H,使DH_,连接
9、OH由于AE_可证SAOES四边形EOFBS四边形FOGCS四边形GOHDSHOA24(14分)如图,AB是O的直径,点F,C是O上两点,且,连接AC,AF,过点C作CDAF交AF延长线于点D,垂足为D(1)求证:CD是O的切线;(2)若CD=2,求O的半径参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】试题分析:1是正数,绝对值是它本身1故选A考点:绝对值2、D【解析】分析:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答详解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“
10、山”故选:D点睛:注意正方体的空间图形,从相对面入手,分析及解答问题3、D【解析】解:延长AB交DC于H,作EGAB于G,如图所示,则GH=DE=15米,EG=DH,梯坎坡度i=1:,BH:CH=1:,设BH=x米,则CH=x米,在RtBCH中,BC=12米,由勾股定理得:,解得:x=6,BH=6米,CH=米,BG=GHBH=156=9(米),EG=DH=CH+CD=+20(米),=45,EAG=9045=45,AEG是等腰直角三角形,AG=EG=+20(米),AB=AG+BG=+20+939.4(米)故选D4、C【解析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系
11、,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线开口向下,得:a0;抛物线的对称轴为x=-=1,则b=-2a,2a+b=0,b=-2a,故b0;抛物线交y轴于正半轴,得:c0.abc0, 正确;2a+b=0,正确;由图知:抛物线与x轴有两个不同的交点,则=b2-4ac0,故错误;由对称性可知,抛物线与x轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故错误;观察图象得当x=-2时,y0,即4a-2b+c0b=-2a,4a+4a+c0即8a+c0,故正确.正确的结论有,故选:C【点睛】主要考查图象与二次函数系数之间的关系,会利用对
12、称轴的表达式求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用5、C【解析】根据乘积为1的两个数互为倒数,可得一个数的倒数【详解】-18=1,18的倒数是,故选C.【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键6、D【解析】由图可知:第个图案有三角形1个,第图案有三角形1+34个,第个图案有三角形1+3+48个,第个图案有三角形1+3+4+412,第n个图案有三角形4(n1)个(n1时),由此得出规律解决问题【详解】解:解:第个图案有三角形1个,第图案有三角形1+34个,第个图案有三角形1+3+48个,第n个图案有三角形4(n1)个(n1时),则第个图中三角形
13、的个数是4(71)24个,故选D【点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出an4(n1)是解题的关键7、B【解析】设y=-(x3)(x+2),y1=1(x3)(x+2)根据二次函数的图像性质可知y1=1(x3)(x+2)的图像可看做y=-(x3)(x+2)的图像向上平移1个单位长度,根据图像的开口方向即可得出答案.【详解】设y=-(x3)(x+2),y1=1(x3)(x+2)y=0时,x=-2或x=3,y=-(x3)(x+2)的图像与x轴的交点为(-2,0)(3,0),1(x3)(x+2)=0,y1=1(x3)(x+2)的图像可看做y=-(x3)(x+2)的图像向
14、上平移1,与x轴的交点的横坐标为x1、x2,-1.【点睛】本题考查的知识点是方差,算术平均数,折线统计图,解题的关键是熟练的掌握方差,算术平均数,折线统计图.16、n2n+1【解析】观察可得,第1层三角形的个数为1,第2层三角形的个数为3,比第1层多2个;第3层三角形的个数为7,比第2层多4个;可得,每一层比上一层多的个数依次为2,4,6,据此作答【详解】观察可得,第1层三角形的个数为1,第2层三角形的个数为222+1=3,第3层三角形的个数为323+1=7,第四层图需要424+1=13个三角形摆第五层图需要525+1=21.那么摆第n层图需要n2n+1个三角形。故答案为:n2n+1.【点睛】
15、本题考查了规律型:图形的变化类,解题的关键是由图形得到一般规律.17、【解析】设O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长【详解】连接BE,设O半径为r,则OA=OD=r,OC=r-2,ODAB,ACO=90,AC=BC=AB=4,在RtACO中,由勾股定理得:r2=42+(r-2)2,r=5,AE=2r=10,AE为O的直径,ABE=90,由勾股定理得:BE=6,在RtECB中,EC.故答案是:.【点睛】考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键三、解答题(共7小题,满分69分)18、(1)详见解析;(2)
16、【解析】(1)连接OD,根据等边对等角得出B=ODB,B=C,得出ODB=C,证得ODAC,证得ODDF,从而证得DF是O的切线;(2)连接BE,AB是直径,AEB=90,根据勾股定理得出BE=2AE,CE=4AE,然后在RtBEC中,即可求得tanC的值【详解】(1)连接OD,OB=OD,B=ODB,AB=AC,B=C,ODB=C,ODAC,DFAC,ODDF,DF是O的切线;(2)连接BE,AB是直径,AEB=90,AB=AC,AC=3AE,AB=3AE,CE=4AE,BE=,在RTBEC中,tanC=19、(1)抛物线的解析式为:y=16x2-13x-2;(2)S与运动时间t之间的函数关
17、系式是S=5t28t+4,t的取值范围是0t1;存在.R点的坐标是(3,32);(3)M的坐标为(1,83)【解析】试题分析:(1)设抛物线的解析式是y=ax2+bx+c,求出A、B、D的坐标代入即可;(2)由勾股定理即可求出;假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,求出P、Q的坐标,再分为两种种情况:A、B、C即可根据平行四边形的性质求出R的坐标;(3)A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,求出直线BD的解析式,把抛物线的对称轴x=1代入即可求出M的坐标试题解析:(1)设抛物线的解析式是y=ax2+bx+c,正方形的边长2,B的坐标(
18、2,2)A点的坐标是(0,2),把A(0,2),B(2,2),D(4,23)代入得:c=-24a+2b+c=-216a+4b+c=-23,解得a=16,b=13,c=2,抛物线的解析式为:y=16x2-13x-2,答:抛物线的解析式为:y=16x2-13x-2;(2)由图象知:PB=22t,BQ=t,S=PQ2=PB2+BQ2,=(22t)2+t2,即S=5t28t+4(0t1)答:S与运动时间t之间的函数关系式是S=5t28t+4,t的取值范围是0t1;假设存在点R,可构成以P、B、R、Q为顶点的平行四边形S=5t28t+4(0t1),当S=54时,5t28t+4=54,得20t232t+1
19、1=0,解得t=12,t=1110(不合题意,舍去),此时点P的坐标为(1,2),Q点的坐标为(2,32),若R点存在,分情况讨论:(i)假设R在BQ的右边,如图所示,这时QR=PB,RQPB,则R的横坐标为3,R的纵坐标为32,即R(3,32),代入y=16x2-13x-2,左右两边相等,这时存在R(3,32)满足题意;(ii)假设R在QB的左边时,这时PR=QB,PRQB,则R(1,32)代入,y=16x2-13x-2,左右不相等,R不在抛物线上(1分)综上所述,存点一点R(3,32)满足题意答:存在,R点的坐标是(3,32);(3)如图,MB=MA,A关于抛物线的对称轴的对称点为B,过B
20、、D的直线与抛物线的对称轴的交点为所求M,理由是:MA=MB,若M不为L与DB的交点,则三点B、M、D构成三角形,|MB|MD|DB|,即M到D、A的距离之差为|DB|时,差值最大,设直线BD的解析式是y=kx+b,把B、D的坐标代入得:,解得:k=23,b=103,y=23x103,抛物线y=16x2-13x-2的对称轴是x=1,把x=1代入得:y=83M的坐标为(1,83);答:M的坐标为(1,83)考点:二次函数综合题20、(1)作图见解析;点B的坐标为:(2,5);(2)作图见解析;(3) 【解析】分析:(1)直接利用已知点位置得出B点坐标即可; (2)直接利用位似图形的性质得出对应点
21、位置进而得出答案; (3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长详解:(1)如图所示:点B的坐标为:(2,5); 故答案为(2,5); (2)如图所示:AB2C2,即为所求; (3)如图所示:P点即为所求,P点坐标为:(2,1),四边形ABCP的周长为:+=4+2+2+2=6+4 故答案为6+4 点睛:本题主要考查了位似变换以及勾股定理,正确利用位似图形的性质分析是解题的关键21、(1)y=5x+9000;(2)每天至少获利10800元;(3)每天生产A产品250件,B产品350件获利最大,最大利润为9625元 【解析】试题分析:(1)A种品牌
22、白酒x瓶,则B种品牌白酒(600-x)瓶;利润=A种品牌白酒瓶数A种品牌白酒一瓶的利润+B种品牌白酒瓶数B种品牌白酒一瓶的利润,列出函数关系式;(2)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;成本=A种品牌白酒瓶数A种品牌白酒一瓶的成本+B种品牌白酒瓶数B种品牌白酒一瓶的成本,列出不等式,求x的值,再代入(1)求利润(3)列出y与x的关系式,求y的最大值时,x的值.试题解析:(1)y=20 x+15(600-x) =5x+9000,y关于x的函数关系式为y=5x+9000;(2)根据题意,得50 x+35(600-x)26400, 解得x360, y=5x+9000,50,y随x的增大
23、而增大,当x=360时,y有最小值为10800,每天至少获利10800元;(3) ,当x=250时,y有最大值9625,每天生产A产品250件,B产品350件获利最大,最大利润为9625元 22、(1)yx22x3;(2);(3)当k发生改变时,直线QH过定点,定点坐标为(0,2)【解析】(1)把点A(1,0),C(0,3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;(2)作CHEF于H,设N的坐标为(1,n),证明RtNCHMNF,可得mn2+3n+1,因为4n0,即可得出m的取值范围;(3)设点P(x1,y1),Q(x2,y2),则点H(x1,y1),设直线HQ表达式为yax+t,
24、用待定系数法和韦达定理可求得ax2x1,t2,即可得出直线QH过定点(0,2)【详解】解:(1)抛物线yx2+bx+c经过点A、C,把点A(1,0),C(0,3)代入,得:,解得,抛物线的解析式为yx22x3;(2)如图,作CHEF于H,yx22x3(x1)24,抛物线的顶点坐标E(1,4),设N的坐标为(1,n),4n0MNC90,CNH+MNF90,又CNH+NCH90,NCHMNF,又NHCMFN90,RtNCHMNF,即解得:mn2+3n+1,当时,m最小值为;当n4时,m有最大值,m的最大值1612+11m的取值范围是(3)设点P(x1,y1),Q(x2,y2),过点P作x轴平行线交抛物线于点H,H(x1,y1),ykx+2,yx2,消去y得,x2kx20,x1+x2k,x1x22,设直线HQ表达式为yax+t,将点Q(x2,y2),H(x1,y1)代入,得,y2y1a(x1+x2),即k(x2x1)ka,ax2x1,( x2x1)x2+t,t2,直线HQ表达式为y( x2x1)x2,当k发生改变时,直线QH过定点,定点坐标为(0,2)【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天津市英华中学2026届英语高三上期末预测试题含解析
- 浙江省慈溪市三山高级中学、奉化高级中学等六校2026届数学高三第一学期期末学业质量监测模拟试题含解析
- 2026届上海市浦东新区进才中学英语高三上期末考试模拟试题含解析
- 陕西省咸阳市泾阳县2026届高二数学第一学期期末联考模拟试题含解析
- 安徽省合肥市2026届高一上数学期末调研模拟试题含解析
- 山东省垦利县第一中学等三校2026届高三英语第一学期期末经典模拟试题含解析
- 湖北省襄阳市普通高中2026届数学高三第一学期期末监测试题含解析
- 黑龙江省鸡西虎林市东方红林业局中学2026届生物高二上期末质量检测模拟试题含解析
- 福建省泉州市南安国光中学2026届高一数学第一学期期末质量跟踪监视试题含解析
- 河北省保定市曲阳县第一中学2026届高二生物第一学期期末检测模拟试题含解析
- 2026秋招:贵州盐业集团笔试题及答案
- 2024年上海师范大学马克思主义基本原理概论期末考试题含答案
- 全球创新药临床试验十年趋势洞察
- 人工关节制备程序
- 2022北京西城五年级(上)期末语文(教师版)
- AHA2025心肺复苏与心血管急救指南解读课件
- 2025年执业兽医考试真题及解析及答案
- 2025年江苏省建筑施工企业主要负责人安全员A证考核考试题库附答案
- 2025年长沙电力职业技术学院单招职业技能测试题库及答案解析
- 医疗用破伤风预防同意书范文
- 长期卧床患者皮肤管理规范
评论
0/150
提交评论