




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、三角形内角和教学设计(精选8篇)三角形内角和教学设计1【教学目标】1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。【教学难点】对不同探究方法的指导和学生对规律的灵活应用。【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。【教学过程】一、激趣引入。1、猜谜语师:同学们喜欢猜谜语吗?生:喜欢。
2、师:那么,下面老师给大家出个谜语。请听谜面:形状似座山,稳定性能坚,三竿首尾连,学问不简单。(打一图形)大家一起说是什么?生:三角形2、介绍三角形按角的分类师:真聪明!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类师分别出示卡片贴于黑板。3、激发学生探知心里师:大家会不会画三角形啊?生:会师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。试一试吧!生:试着画师:画出来没有?生:没有师:画不出来了,是吗?生:是师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”
3、(板书课题)二、探究新知。1、认识三角形的内角看看这三个字,说说看,什么是三角形的内角?生:就是三角形里面的角。师:三角形有几个内角啊?生:3个。师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)师:你知道什么是三角形“内角和”吗?生:三角形里面的角加起来的度数。2、研究特殊三角形的内角和师:分别拿出一个直角三角板,请同学们看看这属于什么三角形,说出每个角的度数,那这个三角形的内角和是多少度?生:算一算:90+60+30=18090+45+45=180师:180也是我们学习过的什么角?生:平角师:从刚才两个三角形的内角和的计算中,你发现
4、了什么?3、研究一般三角形的内角和师:猜一猜,其它三角形的内角和是多少度呢?生:4、操作、验证师:同学们猜的结果各不相同,那怎么办呀?你能想个办法验证一下吗?要求:(1)每4人为一个小组。(2)每个小组都有不同类型的三角形,每种类型都需要验证,先讨论一下,怎样才能较快的完成任务?(3)验证的方法不只一种,同学们要多动动脑子。师:好,开始活动!师:巡视指导师:好!请一组汇报测量结果。生:通过测量我们发现每个三角形的三个内角和都在180度左右。师:其实三角形的内角和就是180度,只是因为我们在测量时存在了一些误差,所以测量出的结果不准确。生:我是用撕的方法,把直角三角形三个内角撕下来,拼在一起,拼
5、成一个平角,是180度。师:好!非常好!师:有其它同学操作锐角三角形和钝角三角形的吗?谁愿意到前面来展示一下?生:展示锐角三角形(撕拼)生:展示折一折我是用折的方法把锐角三角形三个角折在一起,组成一个平角,是180。师:老师也做了一个实验看一看是不是和大家得到结果一样呢?(多媒体展示)现在老师问同学们,三角形的内角和是多少?生:180度。师:通过验证:我们知道了无论是锐角三角形,直角三角形还是钝角三角形,它们的内角和都是180。板书:三角形内角和等于180度。现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180”。三、解决疑问师:好!请同学们回忆一下,刚才课前老师让同学们画出
6、有两个直角的三角形画出来了吗?生:没有师:那你能用这节课的知识解释一下为什么画不出来吗?生:两个直角是180度,没有第三个角了。师:如果想画出有两个角是钝角的三角形你能画出来吗?生:大于180度,也画不出第三个角。师:所以,生活中不存在这样的三角形。师:学会了知识,我们就要懂得去运用。四、巩固提高。1、填空。(1)三角形的内角和是()度。(2)一个三角形的两个内角分别是80和75,它的另一个角是()。2、求下面各角的度数。(1)1=272=533=()这是一个()三角形。(2)1=702=503=()这是一个()三角形。3、判断每组中的三个角是不是同一个三角形中的三个内角。(1)80955()
7、(2)607090()(3)304050()4、红领巾是一个等腰三角形,求底角的度数。(多媒体出示)对学生进行思品教育。5、思考延伸。根据三角形内角和是180度,算一算四边形和八边形的内角和是多少?6、游戏:帮角找朋友每组卡片中,哪三个角可以组成三角形?)每组卡片中,哪三个角可以组成三角形?)6090453060、90、45、30544652五、总结。三角形内角和教学设计2教学目标:1、通过测量一量、拼一拼、折一折三个活动,探索和发现三角形三个内角的度数和等于180。2、已知三角形两个角的度数,会求出第三个角的度数。3、经历三角形内角和的研究方法,感受数学研究方法。教学重点:1、探索和发现三角
8、形三个内角的度数和等于180。2、已知三角形两个角的度数,会求出第三个角的度数。教学难点:掌握探究方法(猜想验证归纳总结),学会用“转化”的数学思想探究三角形内角和。教学用具:表格、课件。学具准备:各种三角形、剪刀、量角器。一、创设情境揭示课题。1、一天两个三角形发生了争执,他们请你们来评评理。大三角形说:“我的个头大,所以我的内角和一定比你大。”小三“角形很不甘心地说:我有一个钝角,我的内角和一定比你大。”。谁说得有道理呢?今天让我们来做一回裁判吧。生1:大三角形大(个子大)生2:小三角形大(有钝角)(教师不做判断,让学生带着问题进入新课)2、什么是三角形的内角和?(板书:内角和)讲解:三角
9、形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。二、自主探究,合作交流。(一)提出问题:1、你认为谁说得对?你是怎么想的?2、你有什么办法可以比较一下这两个三角形的内角和呢?生1:用量角器量一量三个内角各是多少度,把它们加起来,再比较。生2:用拼一拼的办法把三个角拼到一起看它们能不能组成平角。生3:用折一折的办法把三个角折到一起看它们能不能组成平角(二)探索与发现活动一:量一量(1)了解活动要求:(屏幕显示)A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)B、把测量结果记录在表格中,并计算三角形
10、内角和。C、讨论:从刚才的测量和计算结果中,你发现了什么?(引导生回顾活动要求)小组合作。汇报交流。你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?(引导学生发现每个三角形的三个内角和都在180,左右。)(2)提出猜想刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)活动二:拼一拼,验证猜想这个猜想是否成立呢?我们要想办法来验证一下。(板书验证)引导:180,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转
11、换成一个平角呢?(1)小组合作,讨论验证方法。(把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是180)。(2)讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?(3)分组汇报,讨论质疑(4)课件演示,验证结果活动三:折一折师生一起活动,教师先让学生看课件演示,然后拿出准备好的三角形纸艮老师一起折一折。(把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,也证明了三角形内角和等于180,)。讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?提问:还有没有其它的方法?3、回顾两种方法,归纳总结,得出
12、结论。(1)引导学生得出结论。孩子们,三角形内角和到底等于多少度呢?”学生答:“180!”(2)总结方法,齐读结论我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)(3)解释测量误差为什么我们刚才通过测量,计算出来的三角形内角和不是180,呢?那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于180(三)回顾问题:现在你知道这两个三角形谁说得对了吗?(都不对!)为什么?请大家一起,自信肯定的告诉我。生:因为三角形内角和等于180018
13、0。(齐读)三、巩固深化,加深理解。1、试一试:数学书28页第3题A=180-90-302、练一练:数学书29页第一题(生独立解决)A=180-75-283、小法官:数学书29页第二题四、回顾课堂,渗透数学方法。1、总结:猜想验证归纳应用的数学方法。2、介绍:三角形内角和等于180度这个结论的由来;数学领域里还未被证明的其它猜想,如哥德巴赫猜想、霍启猜想、庞加莱猜想等。3、课堂延伸活动:探索多边形内角和板书设计:探索与发现(一)三角形内角和等于180三角形内角和教学设计3教学目标:1、让学生通过量、剪、拼、折等活动,主动探究推导出三角形内角和是180度,并运用所学知识解决简单的实际问题。2、让
14、学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透转化数学思想。3、在学生亲自动手和归纳中,使学生体验成功的喜悦,激发学生主动学习数学的兴趣。教学重点:让学生经历三角形内角和是180这一知识的形成、发展和应用的全过程。教学难点:通过小组内量一量、折一折、撕一撕等活动,验证三角形的内角和是180。教师准备:4组学具、课件学生准备:量角器、练习本教学过程:一、兴趣导入,揭示课题1、导入:同学们,这几天我们都在研究什么知识?能说说你们都认识了哪些三角形吗?它们各有什么特点?(生出示三角形并汇报各类三角形及特点)2、今天老师
15、也带来了两个三角形,想不想看看?(播放大屏幕)。咦,不好,它们怎么吵起来了?快听听它们为什么吵起来了?哦,它们为了三个内角和的大小而吵起来。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)3、我们来帮帮它们好吗?4、那么什么叫内角啊?你们明白吗?谁来说说?来指指。你能标出三角形的三个角吗?(生快速标好)数学中把三角形的这三个角称为三角形的内角,三个内角加起来就叫内角和。这节课我们就来研究一下三角形的内角和(课件片头1)同学们,用什么方法能知道三角形的内角和?二、猜想验证,探究规律(动手操作,探究新知)1量角求和法证明:先听合作要求:拿出准备的一大一小的两个三角形,现在我们以小组为单位来量一量
16、它们的内角,注意分工:最好两个人量,一人记录,一人计算,看哪一小组完成的好?(1)学生听合作要求后分组合作,将各种三角形的内角和计算出来并填在小组活动记录表中。(观察哪组配合好)。(2)指名汇报各组度量和计算内角和的结果。(3)观察:从大家量、算的结果中,你发现什么?归纳:大家算出的三角形内角和都等于或接近180。(5)思考、讨论:通过测量计算,我们发现三角形的内角和不一定等于180度,因为是测量所以能有误差,那么还有更好的方法能验证呢?大家讨论讨论。现在各小组就行动起来吧,看哪些小组的方法巧妙。看看能得出什么结论?看同学们拼得这样开心,老师也想拼拼,行吗?演示课件。看老师最终把三个角拼成了一
17、个什么角?平角。是多少角?180是一个什么角?想一想,怎样可以把三角形的三个内角拼在一起?如果拼成一个180度的平角就可以验证这个结论,对吗?(课件3)现在,我们可验证三角形的内角和是(180度)?2、那么对任意三角形都是这个结论?请看大屏幕。演示锐角三角形折角。(三个顶点重合后是一个平角,折好后是一个长方形。)你们想不想去试一试。1、小组探究活动,师巡视过程中加入探究、指导(如生有困难,师可引导、有可能出现折不到一起的情况,可演示以帮助学生)2、你通过哪种三角形验证(钝角、锐角、直角逐一汇报),生边出示三角形边汇报。(如有实物投影,直接在实物投影上展示最好,也可用大三角形示范,可随机改变顺序
18、)a、验证直角三角形的内角和折法1中三个角拼在一起组成了一个什么角?我们可以得出什么结论?引导生归纳出:直角三角形的内角和是180折法2我们还可以得出什么结论?引导生归纳出:直角三角形中两个锐角的和是90。(即:不必三个角都折,锐角向直角方向折,两个锐角拼成直角与直角重合即可)b、验证锐角、钝角三角形的内角和。归纳:锐角、钝角三角形的内角和也是180。放手发动学生独立完成,逐一种类汇报师给予鼓励三、总结规律刚才,我们将直角三角形、锐角三角形、钝角三角形的三个内角量、剪、撕,能不能给三角形内角下一个结论呢?(生:三角形的内角和是180)对!不论是哪种三角形,不论大小!我们可以得出一个怎样的结论?
19、(三角形的内角和是180。)(教师板书:三角形的内角和是180学生齐读一遍。)为什么用测量计算的方法不能得到统一的结果呢?(量的不准。有的量角器有误差。)老师的大三角形内角和大小三角形内角和大呀?(一样大)首尾呼应四、应用新知,知识升华。(让学生体验成功的喜悦)现在,我们已经知道了三角形的内角和是180,它又能帮助我们解决那些问题呢?(课件5)在一个三角形中,有没有可能有两个钝角呢?(不可能。)追问:为什么?(因为两个锐角和已经超过了180。)有两个直角的一个三角形(因为三角形的内角和是180,在一个三角形中如果有两个直角,它的内角和就大于180。)问:那有没有可能有两个锐角呢?(有,在一个三
20、角形中最少有两个内角是锐角。)1、看图求出未知角的度数。(知识的直接运用,数学信息很浅显)2、做一做:在一个三角形中,1=140度,3=35度,求2的度数、3、27页第3题(数学信息较为隐藏和生活中的实际问题)4思考题、五、总结今天,我们在研究三角形的内角和时经历了猜想、验证、得出结论的过程,并且运用这一结论解决了一些问题。人们在进行科学研究中,常常都要经历这样的过程,同时,它也是一种科学的研究方法。板书设计:三角形内角和量一量拼一拼折一折三角形内角和是180三角形内角和教学设计4【教材内容】:北师大版四年级数学下册【教学目标】:1、探索与发现三角形的内角和是180,已知三角形的两个角度,会求
21、出第三个角度。2、培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。3、培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。【教学重点和难点】:重点掌握三角形的内角和是180,会应用三角形的内角和解决实际问题;难点是探索性质的过程。【教材分析】三角形内角和属于空间与图形的范畴,是在学生已经接触了三角形的稳定性和三角形的分类相关知识后对三角形的进一步研究,探索三个内角的和。教材中安排了学生对不同形状的、大小的三角形进行进行度量,运用折叠、拼凑等方法发现三角形的内角和是180。扩充了学生认识图形的一般规律从直观感性的认识到具体的性质探索,更加深入的培养了学生的空间观念。【教
22、学过程】一、创设情境,激发兴趣。出示课件,提出两个两个疑问:1、两个大小不一样的两个三角形的对话我比你大,所以我的内角和比你大,是这样的吗?2、三个形状不一样的三角形的争论。我们的形状不一样,所以我们的内角和各不相同,是这样的吗?老师发现它们争论的焦点是三角形的内角和的问题,那什么是三角形的内角?什么又是三角形的内角和呢?二、初建模型,实际验证自己的猜想在第一步的基础上学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。这时教师要组织学生进行小组合作,每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形、等腰
23、三角形、等边三角形)的三个内角,并计算出它们的总和是多少?把小组的测量结果和讨论结果记录下来以便全班进行交流。三角形的形状三角形每个内角的度数内角和锐角三角形钝角三角形直角三角形等腰三角形等边三角形三、再建模型,彻底的得出正确的结论因为在上一环节学生已经得出三角形的内角和大约都是或接近180度。因为我们在测量时由于测量人不同、测量工具不同可能产生一些误差。有的同学难免可能猜想三角形的内角和就是180度呢?我们继续研究和探索。除了测量外我们是否可以利用我们手中的三角形通过拼一拼、折一折、画一画的方法来证明三角形的内角和都是180度呢?教师放手让学生去思考、去动手操作,对有困难和有疑问的同学进行提
24、示和指导。然后让学生到前面演示验证的方法,教师借助多媒体进行演示。四、应用新知,巩固练习1、算一算,对于不同形状的三角形给出其中的两个角求第三个角的度数。(1小题属于基本练习)2、试一试,在直角三角形中已知其中的一个角求另一个角的度数3、想一想,已知等腰三角形的顶角如何算出它的两个底角;已知等腰三角形的一个底角的度数求三角形的顶角。4、说一说,判断三角形的两个锐角的和大于90度;直角三角形的两个两个锐角的和等90度;等腰三角形沿着高对折,每个三角形的内角和是90度。这些说法是否正确?由两个三角形拼成一个大的三角形,大三角形的内角和是360度,对吗?五、拓展与延伸通过三角形的内角和是180度的事
25、实来探讨四边形、五边行的内角和。三角形内角和教学设计5设计思路本节课我先引导学生任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180或接近180(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再引导学生通过折角的方法也发现这个结论,由此获得三角形的内角和是180的结论。概念的形成没有直接给出结论,而是通过量、算、拼、折等活动,让学生探索、实验、发现、推理归纳出三角形的内角和是180。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次性和趣味性,还设计了开放性的练习,由一个同学出题,其它同学回答。先给出三角形两个内角的度数,说出另
26、外一个内角,有唯一的答案。给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中拓展学生思维。教学目标1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180,并会应用这一知识解决生活中简单的实际问题。2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。教学重点让学生经历“三角形内角和是180”这一知识的形成、发展和应用的全过程。教学准备教具:多媒体课件、用彩色卡纸剪的相同的两个直角三角形、一个钝角
27、三角形、一个锐角三角形。学具:三角形教学过程一、引入(一)认识三角形的内角及三角形的内角和师:我们已经学习了三角形的分类,谁能说说老师手上的是什么三角形?师:今天我们来学习新的知识三角形内角和,谁能说说哪些角是三角形的内角?(让学生边说边指出来)师:那三角形的内角和又是什么意思?(把三角形三个内角的度数合起来就叫三角形的内角和。)(二)设疑,激发学生探究新知的心理师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)生:能。师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)师:有谁画出来啦?生1:不能画。生2:只能画两个直角。生
28、3:师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?那就让我们一起来研究吧!(揭示矛盾,巧妙引入新知的探究)二、动手操作,探究三角形内角和(一)猜一猜。师:猜一猜三角形的内角和是多少度呢?同桌互相说说自己的看法。生1:180。生2:不一定。(二)操作、验证三角形内角和是180。1、量一量三角形的内角动手量一量自己手中的三角形的内角度数。师:所有三角形的内角和究竟是不是180,你能用什么办法来证明,使别人相信呢?生:可以先量出每个内角的度数,再加起来。师:哦,也就是测量计算,是吗?学生汇报结果。师:请汇报自己测量的结果。生1:180。生2:175。生3:182。2、拼一拼三角形的内角学生操作
29、师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?生1:有。生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。师:怎样才能把三个内角放在一起呢?(学生操作)生:把它们剪下来放在一起。师:很好。汇报验证结果。师:通过拼合我们得出什么结论?生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180。生2:直角三角形的内角和也是180。生3:钝角三角形的内角和还是180。课件演示验证结果。师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)师:我们可以得出一个怎样的结论?生:三角形的内角和是180。(教师板书:三角形的内角和
30、是180学生齐读一遍。)师:为什么用测量计算的方法不能得到统一的结果呢?生1:量的不准。生2:有的量角器有误差。师:对,这就是测量的误差。3、折一折三角形的内角师:除了量、拼的方法,还有没有别的方法可以验证三角形的内角和是180。如果学生说不出来,教师便提示或示范。学生操作4、小结:三角形的内角和是180。三、解决疑问。师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)生:因为三角形的内角和是180,在一个三角形中如果有两个直角,它的内角和就大于180。师:在一个三角形中,有没有可能有两个钝角呢?生:不可能。师:为什么?生:因为两个锐角和已经超过了180。师:那有没
31、有可能有两个锐角呢?生:有,在一个三角形中最少有两个内角是锐角。四、应用三角形的内角和解决问题。1、下面说法是否正确。钝角三角形的内角和一定大于锐角三角形的内角和。()在直角三角形中,两个锐角的和等于90度。()在钝角三角形中两个锐角的和大于90度。()一个三角形中不可能有两个钝角。()三角形中有一个锐角是60度,那么这个三角形一定是个锐角三角形。()2、看图求出未知角的度数。(知识的直接运用,数学信息很浅显)3、游戏巩固。由一个同学出题,其它同学回答。(1)给出三角形两个内角,说出另外一个内角(有唯一的答案)。(2)给出三角形一个内角,说出其它两个内角(答案不唯一,可以得出无数个答案)。4、
32、根据所学的知识算出四边形、正五边形、正六边形的内角和。五、全课总结。今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?反思:在本节课的学习活动过程中,先让学生进行测量、计算,但得不到统一的结果,再引导学生用把三个角拼在一起得到一个平角进行验证。这时,有部分学生在拼凑的过程中出现了困难,花费的时间较长,在这里用课件再演示一遍正好解决了这个问题。再引导学生用折三角形的方法也能验证三角形的内角和是180。练习设计也具有许多优点,注意到练习的梯度,并由浅入深,照顾到不同层次学生的需求,也很有趣味性。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新
33、知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。但因为是借班上课,对学生了解不多,学生前面的内容(三角形的特性和分类)还没学好,所以有些练习学生就没有预想的那么得心应手,如:知道等腰三角形的顶角求底角的题,学生掌握比较困难。三角形内角和教学设计6一、教学目标1.知识目标:通过测量、撕拼(剪拼)、折叠等方法,探索和发现三角形三个内角的度数和等于180这一规律,并能实际应用。2.能力目标:培养学生主动探索、动手操作的能力。使学生养成良好的合作习惯。3.情感目标:让学生体会几何图形内在的结构美。并充分体会到学习数学的快乐。二、教学过程(一)创设情
34、境,导入新课1、师:我们已经认识了三角形,你知道哪些关于三角形的知识?(学生畅所欲言。)2、师:我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?让我们一起去看看吧!师口述:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”,3、到底谁说的对呢?今天我们就来研究有关三角形内角和的知识。(板书课题:三角形内角和)(二)自主探究,发现规律1、认识什么是三角形的内角和。师:你知道什么是三角形的内角和吗?通过学生讨论,得出三角形的内角和就是三角形三个内角的度数
35、和。2、探究三角形内角和的特点。让学生想一想、说一说怎样才能知道三角形的内角和?学生会想到量一量每个三角形的内角,再相加的方法来得到三角形的内角和。(如果学生想到别的方法,只要合理的,教师就给予肯定,并鼓励他们对自己想到的方法进行)小组合作。通过小组合作后交流,汇报。(教师同时板书出几个小组汇报的结果)让学生们发现每个三角形的内角和都在180左右。引导学生推测出三角形的内角和可能都是180。3、验证推测。让学生动脑筋想一想,怎样才能验证自己的推想是否正确,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180,也就是说三角形的三个角能不能拼成一个平角。(小组合作验证,教师参与
36、其中。)4、全班交流,共同发现规律。当学生汇报用折拼或剪拼的方法的时候,指名学生上黑板展示结果。学生交流、师生共同总结出三角形的内角和等于180。教师同时板书(三角形内角和等于180。)5、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180做系统的整理。)(三)巩固练习,拓展应用根据发现的三角形的新知识来解决问题。1、完成“试一试”让学生独立完成后,集体交流。2、游戏:选度数,组三角形。请选出三个角的度数来组成一个三角形。150101518203235505254565813070727560学生回答的同时,教师操作课件
37、,把学生选择的度数拖入方框内,通过电脑计算相加是否等于180,来验证学生的选择是否正确。验证学生选的对了以后,再让学生判断选择的度数所组成的三角形按角的大小分类,属于哪种三角形。并说出理由。3、“想想做做”第1题生独立完成,集体订正,并说说解题方法。4、“想想做做”第2题提问:为什么两个三角形拼成一个三角形后,内角和还是180度?5、“想想做做”第3题生动手折折看,填空。提问:三角形的内角和与三角形的大小有关系吗?三角形越大,内角和也越大吗?6、“想想做做”第5题生独立完成,说说不同的解题方法。7、“想想做做”第6题学生说说自己的想法。8、思考题教师拿一个大三角形,提问学生内角和是多少?用剪刀
38、剪成两个三角形,提问学生内角和是多少?为什么?再剪下一个小三角形,提问学生内角和是多少?为什么?最后建成一个四边形,提问学生内角和是多少?你能推导出四边形的内角和公式吗?(四)课堂总结本节课我们学习了哪些内容?(生自由说),同学们说得真好,我们要勇于从事实中寻找规律,再将规律运用到实践当中去。三教后反思:“三角形的内角和”是小学数学教材第八册“认识图形”这一单元中的一个内容。通过钻研教材,研究学情和学法,与同组老师交流,我将本课的教学目标确定为:1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180度。2、已知三角形两个角的度数,会求出第三个角的度数。本节教学是在学生在学习
39、“认识三角形”的基础上进行的,“三角形内角和等于180度”这一结论学生早知晓,但为什么三角形内角和会一样?这也正是本节课要与学生共同研究的问题。所以我将这节课教学的重难点设定为:通过动手操作验证三角形的内角和是180。教学方法主要采用了实验法和演示法。学生的折、拼、剪等实践活动,让学生找到了自己的验证方法,使他们体验了成功,也学会了学习。下面结合自己的教学,谈几点体会。(一)创设情景,激发兴趣俗话说:“良好的开端是成功的一半”。一堂课的开头虽然只有短短几分钟,但它却往往影响一堂课的成败。因此,教师必须根据教学内容和学生实际,精心设计每一节课的开头导语,用别出心裁的导语来激发学生的学习兴趣,让学
40、生主动地投入学习。本节课先创设画角质疑的情景,当学生画不出来含有两个直角的三角形时,学生想说为什么又不知怎么说,学生探究的兴趣因此而油然而生。(二)给学生空间,让他们自主探究“给学生一些权利,让他们自己选择;给学生一个条件,让他们自己去锻炼;给学生一些问题,让他们自己去探索;给学生一片空间,让他们自己飞翔。”我记不清这是谁说过的话,但它给我留下深刻的印象。它正是新课改中学生主体性的表现,是以人为本新理念的体现。所以在本节课中我注重创设有助于学生自主探究的机会,通过“想办法验证三角形内角和是180度”这一核心问题,引发学生去思考、去探究。我让他们将课前准备好的三角形拿出来进行研究,学生通过折一折
41、、拼一拼、剪一剪等活动找到自己的验证方法。学生拿着他们手中的三角形,在讲台上讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。这样,学生在经历“再创造”的过程中,完成了对新知识的构建和创造。(三)以学定教,注重教学的有效性新课表指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。要把学生的个人知识、直接经验和现实世界作为数学教学的重要资源,即以学定教,注重每个教学环节的有效性。本课中当我提出“为什么一个三角形中不能有两个角是直角”时,有学生指出如果有两个直角,它就拼不成了一个三角形;也有学生说如果有两个直角,它就趋向于长方形或正方形。“
42、为什么会这样呢”?学生沉默片刻后,忽然有个学生举手了:“因为三角形的内角和是180度,两个直角已经有180度了,所以不可能有两个角是直角。”这样的回答把本来设计的教学环节打乱了,此时我灵机把问题抛给学生,“你们理解他说的话吗、你怎么知道内角和是180度、谁都知道三角形的内角和是180度”等,当我看到大多数的已经知道这一知识时,我就把学生直接引向主题“想不想自己研究证明一下三角形的内角和是不是180度。”激发了学生探究的兴趣,使学生马上投入到探究之中。在练习的时候,由于形式多样,所以学生的兴趣非常高涨,效果很好。通过多边形内角和的思考以及验证,发展了学生的空间想象力,使课堂的知识得以延伸。三角形
43、内角和教学设计7【设计理念】新课标重视让学生经历数学知识的形成过程,要求教师创设有效的问题情境激发学生的参与欲望,提供足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的形成过程。这样,学生不仅可以掌握知识,而且可以积累探究数学问题的活动经验,发展空间观念和推理能力。【教材内容】新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习十六的第1、2、3题。【教材分析】三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的
44、探索与发现,安排两次实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180。【学情分析】、在学习本课时,学生已经有了探索三角形内角和的知识基础:知道直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,知道他们的四个角都是直角;认识了三角形,知道了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经知道了等腰三角形和正三角形。、已经有一部分学生知道了三角形内角和是180,只是知其然而不
45、知所以然。【教学目标】1通过“量、剪、拼”等活动发现、验证三角形的内角和是180,并能运用这个知识解决一些简单的问题。2.在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。3.在参与数学学习活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。【教学重点】探索发现、验证“三角形内角和是180”,并运用这个知识解决实际问题。【教学难点】验证“三角形的内角和是180”。【教(学)具准备】多媒体课件;锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角
46、尺。【教学步骤】一、复习旧知引出课题1、你已经知道有关三角形的哪些知识?2、出示课题:三角形的内角和设计意图:也自然导入新课。二、提出问题引发猜想1、提出问题:看到这个课题,你有什么问题想问的?预设:(1)三角形的内角指的是哪些角?(2)三角形的内角和是什么意思?(3)三角形的内角一共是多少度?2、引发猜想猜一猜:三角形的内角和是多少度?你是怎么猜的?设计意图:提出一个问题比解决一个问题更重要。课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的内容,无疑激发了学生的学习兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角
47、和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。三、操作验证形成结论1、交流验证方法:(1)用什么方法证明三角形的内角和是180度呢?预设:量算法剪拼法折拼法等(2)三角形的个数有无数个,验证哪些三角形可以代表所有的三角形?我们的操作过程怎么分工才会做到省时又高效?2、动手验证3、全班汇报交流4、小结:刚才通过大家的动手操作验证了三角形的内角和是180度。但动手操作会存在一定的误差,我们的结论也可能存在偏差。5、方法拓展推理验证:用直角三角形的内角和来证明其他三角形内
48、角和是180的方法。6、形成结论:任意三角形的内角和是180。设计意图:标准指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经
49、验支撑。四、应用结论解决问题1、巩固新知:想一想,算一算。2、解决问题:等腰三角形风筝的顶角是多少度?3、辨析训练,完善结论。五、课堂总结,归纳研究方法今天这节课你学到了哪些知识?你是怎样得到这些知识的?六、课后延伸:用今天所学的方法继续研究四边形的内角和。七、板书设计:三角形的内角和猜测:三角形的内角和是180?验证:量拼结论:任意三角形的内角和是180三角形内角和教学设计8【教材内容】北京市义务教育课程改革实验教材(北京版)第九册数学【教材分析】三角形内角和是北京市义务教育课程改革实验教材(北京版)第九册第三单元的内容,属于空间与图形的范畴,是在学生已经掌握了三角形的稳定性和三角形的三边关
50、系相关知识后对三角形的进一步研究,探索三角形的内角和等于180。教材中安排了学生对不同形状的、大小的三角形进行度量,再运用拼、折、剪等方法发现三角形的内角和是180。让学生在自主探索中发现三角形的又一特性,更加深入的培养了学生的空间观念。【学生分析】在四年级学生已经掌握了角的概念、角的分类和角的度量等知识。在本课之前,学生又掌握了三角形的稳定性研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。【教学目标】1、通过量、拼、折、剪等方法探
51、索和发现三角形的内角和等于180掌握并会应用这一规律解决实际的问题。2、通过讨论、争辩、操作、推理发展学生动手操作、观察比较和抽象概括的能力。3、使学生掌握由特殊到一般的逻辑思辨方法和先猜想后研究问题的方法。【教学重点】让学生经历“三角形内角和是180度”这一知识的形成发展和应用的全过程。【教学难点】能利用学到的知识进行合情的推理。【教具学具准备】课件、各种各样的直角三角形、长方形、剪刀、量角器、数学纸【教学过程】一、学具三角板,引入新课1、(出示两个直角三角板),问:这是咱们同学非常熟悉的一种学习工具,是什么呀?(三角板)它们的外形是什么形状的?(三角形)(课件:抽象出三角形)2、顾名思义一
52、个三角形都有几个角呀?(三个)3、认识内角(1)在三角形的内部相临两条边之间所夹的角叫做三角形的内角。(课件闪烁1)(板书:三角形内角)1就叫做三角形的什么?这两条边夹的角2呢?3呢?(2)这个三角形内有几个内角?(三个)这个呢?(三个)(设计意图:由学生最熟悉的三角板引入新课,激发学生兴趣的同时为后面的学习做准备)二、动手操作,探索新知(一)直角三角形内角和、特殊直角三角形内角和1、根据我们以往对三角板的了解,你还记得每个三角形上每个内角各是多少度吗?(生说度数,师课件上在相应角出示度数:90、60、30,90、45、45)。2、观察这两个三角形的度数,你有什么发现?生1:都有一个直角,师:
53、那我们就可以说他们是什么三角形?(板书:直角三角形)生2:我还发现他们内角加起来是180度。师:他真会观察,你发现了吗?快算一算是不是他说的那样?(课件):(1)90+60+30=180)那么另一个三角板的三个内角的总度数是多少?(生回答,师课件:(2)90+45+45=180)3、你指的哪是180度?(生:这三个内角合起来是180度)4、在三角形内三个内角的总度数又简称为三角形的内角和。(板书:和)5、这个直角三角形的内角和是多少度?另一个呢?6、你还记得180度是我们学过的是什么角吗?(平角)赶快在你的数学纸上画一个平角。(师出示一个平角)问:平角是什么样的?7、师述:角的两边形成一条直线就是平角。也就是180度,哦,这两个直角三角形的内角和就组成这样的一个角呀。、一般直角三角形内角和1、老师还为你们准备了各种各样的直角三角形,快拿出来看看。2、刚才的那两个直角三角形的内
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行代收水费协议书
- 转让建房指标协议书
- 韦博门店转让协议书
- 阳光小院合伙协议书
- 部队厂房出租协议书
- 车棚承包合同协议书
- 住宅地下室物业协议书
- 公积金委托追缴协议书
- 让学生签安全协议书
- 餐饮代理加盟协议书
- 2024-2025学年度部编版二年级语文下学期期末试卷 (含答案)
- 2025年电子工程师工作能力考试试题及答案
- 浙江省Z20联盟(浙江省名校新高考研究联盟)2025届高三第三次联考物理(含答案)
- 营业执照共用协议书范本
- 掌握纺织机械核心操作技能试题及答案
- 法律争议预测模型-全面剖析
- 家政讲师面试题及答案
- 实测实量笔试题及答案
- 篦冷机岗位试题及答案
- 中国糖尿病肾脏病防治指南(2021年版)
- 败血症知识课件
评论
0/150
提交评论