版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、不定积分的概念第一节 不定积分的概念与性质一、原函数与不定积分的概念二、根本积分表三、不定积分的性质返回一、原函数与不定积分的概念 如果在区间 内,可导函数 的导函数为 即 都有那么函数就称为dF(x)=f(x)dx或 在区间 内原函数.或F(x)f(x)f(x)dxI1、原函数:2、不定积分:在区间 内,函数 的带有任意常数项的原函数称为 在区间 内的不定积分,记为 .III 数学中很多运算都存在逆运算,例如:加法与减法、乘法与除法、乘方与开方、指数与对数等等,都是互逆运算。 求导运算也存在逆运算, 这个逆运算就是本章所要讲的不定积分。现在先看不定积分中遇到的第一个概念。任意常数积分号被积函
2、数被积表达式积分变量注解例1 求以下不定积分 (1) ; (2) ; (3) ; (4) 。 解:由不定积分的定义,只要求被积函数一个原函数之后,再加上一个积分常数C即可。 1被积函数 ,因为 ,所以 是 的一个原函数。根据不定积分的定义,有 2 3 4例2 求当 时,是 在 内的一个原函数 即在内,是 在 内的一个原函数 即在内当时,解:返回课堂练习:求以下不定积分1解:原式=2解:原式=3解:原式=4解:原式=二、 根本积分表积分运算和微分运算是互逆的,因此可以根据求导公式得出积分公式.是常数);例3 求以下不定积分: 1 2 3解:1 2 3课堂练习: 求以下不定积分 1 ;2 ;3 ;4 。解: 1 2 3 4返回三、 不定积分的性质性质1 设函数 及 的原函数存在,那么性质2 设函数 的原函数存在, 为非零常数,那么注解性质1可推广到有限多个函数之和的情况利用性质对被积函数进展恒等变形,然后使用根本积分表的方法即:直接积分法.例4求解:例5求解:例6求解:例7 求解Cxxxdxxdxdxxdxxxdxxxxdxxxdxxx+-=+-=+-=+-+=+-+=+arctan31111)1(11)1)(1(1111322222222424例8 求解课堂练习 求以下不定积分1 2 3 4解:1 2 3 4四、不定积分的几何意义小结:直接积分法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 施工方案-联系函(3篇)
- 疫情消毒污水管理制度(3篇)
- 社区居家健康监测管理制度(3篇)
- 认定收费管理制度的意义(3篇)
- 酒店油烟道清洗管理制度(3篇)
- 门窗业成本控制管理制度(3篇)
- 兽药培训课件分享稿
- 《GA 878-2010警用炊事汽车》专题研究报告深度
- 把握情绪的主旋律课件2025-2026学年北师大版(2015年)初中心理健康七年级全一册
- 《GA 745-2017银行自助设备、自助银行安全防范要求》专题研究报告深度
- 2025年全国职业院校技能大赛中职组(母婴照护赛项)考试题库(含答案)
- 2026江苏盐城市阜宁县科技成果转化服务中心选调10人考试参考题库及答案解析
- 托管机构客户投诉处理流程规范
- 2026年及未来5年中国建筑用脚手架行业发展潜力分析及投资方向研究报告
- 银行客户信息安全课件
- 2026年四川单招单招考前冲刺测试题卷及答案
- 2026年全国公务员考试行测真题解析及答案
- 2025新疆华夏航空招聘笔试历年难易错考点试卷带答案解析
- (2025)70周岁以上老年人换长久驾照三力测试题库(附答案)
- 金太阳山西省名校三晋联盟2025-2026学年高三上学期12月联合考试语文(26-177C)(含答案)
- 2026年泌尿护理知识培训课件
评论
0/150
提交评论