2022-2023学年湖南省长沙市宁乡县九年级数学第一学期期末调研试题含解析_第1页
2022-2023学年湖南省长沙市宁乡县九年级数学第一学期期末调研试题含解析_第2页
2022-2023学年湖南省长沙市宁乡县九年级数学第一学期期末调研试题含解析_第3页
2022-2023学年湖南省长沙市宁乡县九年级数学第一学期期末调研试题含解析_第4页
2022-2023学年湖南省长沙市宁乡县九年级数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1如图,现有一个圆心角为90,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为( )A2cmB3cmC4cmD1c

2、m2如图,ABC中AB两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作ABC的位似图形ABC,且ABC与ABC的位似比为2:1设点B的对应点B的横坐标是a,则点B的横坐标是()ABCD3若关于的一元二次方程的两个实数根是和3,那么对二次函数的图像和性质的描述错误的是( )A顶点坐标为(1,4)B函数有最大值4C对称轴为直线D开口向上4如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB的宽为8cm,水面最深的地方高度为2cm,则该输水管的半径为()A3cmB5cmC6cmD8cm5如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,

3、连接AE交BD于点F,则DEF与BAF的面积之比为()A2:5B3:5C9:25D4:256如图,如果BADCAE,那么添加下列一个条件后,仍不能确定ABCADE的是( )ABDBCAEDCD7如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为,缆车速度为每分钟米,从山脚下到达山顶缆车需要分钟,则山的高度为( )米.ABCD8如图一块直角三角形ABC,B90,AB3,BC4,截得两个正方形DEFG,BHJN,设S1DEFG的面积,S2BHJN的面积,则S1、S2的大小关系是()AS1S2BS1S2CS1S2D不能确定9在RtABC中,C90,若斜边AB是直角边BC的3倍

4、,则tanB的值是( )AB3CD210小华同学某体育项目7次测试成绩如下(单位:分):9,7,1,8,1,9,1这组数据的中位数和众数分别为( )A8,1B1,9C8,9D9,1二、填空题(每小题3分,共24分)11方程的解为_.12反比例函数y的图象经过点(2,3),则k的值为_13如图,甲、乙两楼之间的距离为30米,从甲楼测得乙楼顶仰角为30,观测乙楼的底部俯角为45,乙楼的高h_米(结果保留整数1.7,1.4)14已知点A(a,1)与点A(5,b)是关于原点对称,则a+b =_15小明身高1.76米,小亮身高1.6米,同一时刻他们站在太阳光下,小明的影子长为1米,则小亮的影长是_米.1

5、6若二次函数的图象与x轴只有一个公共点,则实数n=_17已知二次函数y3x2+2x,当1x0时,函数值y的取值范围是_18如图,点E在正方形ABCD的边CD上若ABE的面积为8,CE=3,则线段BE的长为_三、解答题(共66分)19(10分)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60沿坡面AB向上走到B处测得广告牌顶部C的仰角为45,已知山坡AB的坡度i=1:,AB=10米,AE=15米(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度(测角器的高度忽略不计,结果精确到0.1米参考数据:1

6、.414,1.732)20(6分)如图,抛物线与轴交于两点,与轴交于点,设抛物线的顶点为点(1)求该抛物线的解析式与顶点的坐标(2)试判断的形状,并说明理由(3)坐标轴上是否存在点,使得以为顶点的三角形与相似?若存在,请直接写出点的坐标;若不存在,请说明理由21(6分)一个不透明的口袋里有四个完全相同的小球,把它们分别标号为,随机摸取一个小球然后放回,再随机摸取一个请用画树状图和列表的方法,求下列事件的概率:(1)两次取出的小球标号相同;(2)两次取出的小球标号的和等于122(8分)国庆期间,某风景区推出两种旅游观光活动付费方式:若人数不超过20人,人均缴费500元;若人数超过20人,则每增加

7、一位旅客,人均收费降低10元,但是人均收费不低于350元现在某单位在国庆期间组织一批贡献突出的职工到该景区旅游观光,支付了12000元观光费,请问:该单位一共组织了多少位职工参加旅游观光活动?23(8分)如图,一次函数ykx+b的图象与反比例函数y的图象交于A(2,1),B(1,n)两点(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值反比例函数的值的x的取值范围24(8分)在平面直角坐标系中,抛物线:沿轴翻折得到抛物线.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点 当时,求抛物线和围成的封闭区域内(包括边界)整点的个数; 如果抛物线C1和C2围成的封闭区

8、域内(包括边界)恰有个整点,求m取值范围25(10分)在一个不透明的布袋中,有个红球,个白球,这些球除颜色外都相同(1)搅匀后从中任意摸出个球,摸到红球的概率是_;(2)搅匀后先从中任意摸出个球(不放回),再从余下的球中任意摸出个球求两次都摸到红球的概率(用树状图或表格列出所有等可能出现的结果)26(10分)一汽车租赁公司拥有某种型号的汽车100辆公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:x3000320035004000y100969080(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间

9、的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元用含x(x3000)的代数式填表:租出的车辆数 未租出的车辆数 租出每辆车的月收益 所有未租出的车辆每月的维护费 (3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:本题的关键是利用弧长公式计算弧长,再利用底面周长=展开图的弧长可得解答:解:L=,解R=2cm故选 A.考点: 弧长的计算2、D【解析】设点B的横坐标为x,然后表示出BC、BC的横坐标的距离,再根据位似变换的概念列式

10、计算【详解】设点B的横坐标为x,则B、C间的横坐标的长度为1x,B、C间的横坐标的长度为a+1,ABC放大到原来的2倍得到ABC,2(1x)a+1,解得x(a+3),故选:D【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键3、D【分析】由题意根据根与系数的关系得到a0,根据二次函数的性质即可得到二次函数y=a(x-1)2+1的开口向下,对称轴为直线x=1,顶点坐标为(1,1),当x=1时,函数有最大值1【详解】解:关于x的一元二次方程的两个实数根是-1和3,-a=-1+3=2,a=-20,二次函数的开口向下,对称轴为直

11、线x=1,顶点坐标为(1,1),当x=1时,函数有最大值1,故A、B、C叙述正确,D错误,故选:D【点睛】本题考查二次函数的性质,根据一元二次方程根与系数的关系以及根据二次函数的性质进行分析是解题的关键4、B【分析】先过点O作ODAB于点D,连接OA,由垂径定理可知ADAB,设OAr,则ODr2,在RtAOD中,利用勾股定理即可求出r的值【详解】解:如图所示:过点O作ODAB于点D,连接OA,ODAB,ADAB4cm,设OAr,则ODr2,在RtAOD中,OA2OD2+AD2,即r2(r2)2+42,解得r5cm该输水管的半径为5cm;故选:B【点睛】此题主要考查垂径定理,解题的关键是熟知垂径

12、定理及勾股定理的运用.5、C【分析】由平行四边形的性质得出CDAB,进而得出DEFBAF,再利用相似三角形的性质可得出结果.【详解】四边形ABCD为平行四边形,CDAB,DEFBAFDE:EC=3:2,故选C【点睛】本题考查了相似三角形的性质与判定及平行四边形的性质,解题的关键是掌握相似三角形的面积比等于相似比的平方.6、C【分析】根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案【详解】BAD CAE,A,B,D都可判定,选项C中不是夹这两个角的边,所以不相似.故选C.【点睛】考查相似三角形的判断方法,掌握相似三角形常用的判定方法是解题的关键.7、C【分析】在中,利用BAC的

13、正弦解答即可【详解】解:在中,(米),(米)故选【点睛】本题考查了三角函数的应用,属于基础题型,熟练掌握三角函数的定义是解题的关键8、B【分析】根据勾股定理求出AC,求出AC边上的高BM,根据相似三角形的性质得出方程,求出方程的解,即可求得S1,如图2,根据相似三角形的性质列方程求得HJ,于是得到S2()2()2,即可得到结论【详解】解:如图1,设正方形DEFG的边长是x,ABC是直角三角形,B90,AB3,BC4,由勾股定理得:AC5,过B作BMAC于M,交DE于N,由三角形面积公式得:BCABACBM,AB3,AC5,BC4,BM2.4,四边形DEFG是正方形,DGGFEFDEMNx,DE

14、AC,BDEABC,x,即正方形DEFG的边长是;S1()2,如图2,HJBC,AHJABC,即,HJ,S2()2()2,S1S2,故选:B【点睛】本题考查了相似三角形的性质和判定,三角形面积公式,正方形的性质的应用,熟练掌握相似三角形的判定和性质是解题的关键9、D【分析】先求出AC,再根据正切的定义求解即可.【详解】设BC=x,则AB=3x,由勾股定理得,AC=,tanB=,故选D考点:1锐角三角函数的定义;2勾股定理10、D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,1,1,1,最中间的数是9,则中位数是9;1出现了3次,出现的次数最多,则众数是1;故选D考点:众数;中位数二

15、、填空题(每小题3分,共24分)11、,【分析】因式分解法即可求解.【详解】解:x(2x-5)=0,,【点睛】本题考查了用提公因式法求解一元二次方程的解,属于简单题,熟悉解题方法是解题关键.12、-1【解析】将点(2,3)代入解析式可求出k的值【详解】把(2,3)代入函数y中,得3,解得k1故答案为1【点睛】主要考查了用待定系数法求反比例函数的解析式先设y,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式13、1【分析】根据正切的定义求出CD,根据等腰直角三角形的性质求出BD,结合图形计算,得到答案【详解】解:在RtACD中,tanCAD,CDADtanCAD30tan301017,在

16、RtABD中,DAB45,BDAD30,hCD+BD1,故答案为:1【点睛】本题考查解直角三角形的应用,要注意利用已知线段和角通过三角关系求解.14、-1【解析】试题分析:根据关于原点对称的两点的横纵坐标分别互为相反数可知a5,b1,所以ab(5)(1)=1,故答案为115、【分析】利用同一时刻实际物体与影长的比值相等进而求出即可【详解】设小亮的影长为xm,由题意可得:,解得:x=故答案为:【点睛】此题主要考查了相似三角形的应用,正确利用物体高度与影长的关系是解题关键16、1【解析】解:y=x21x+n中,a=1,b=1,c=n,b21ac=161n=0,解得n=1故答案为117、y1【分析】

17、利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解【详解】y3x2+2x3(x+)2,函数的对称轴为x,当1x0时,函数有最小值,当x1时,有最大值1,y的取值范围是y1,故答案为y1【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质18、5.【详解】试题解析:过E作EMAB于M,四边形ABCD是正方形,AD=BC=CD=AB,EM=AD,BM=CE,ABE的面积为8,ABEM=8,解得:EM=4,即AD=DC=BC=AB=4,CE=3,由勾股定理得:BE=5.考点:1.正方形的性质;2.三角形的面积;3.勾股定理三、解答题(共66分)19、

18、(1)点B距水平面AE的高度BH为5米.(2)宣传牌CD高约2.7米.【分析】(1)过B作DE的垂线,设垂足为G分别在RtABH中,通过解直角三角形求出BH、AH.(2)在ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在RtCBG中,CBG=45,则CG=BG,由此可求出CG的长然后根据CD=CG+GEDE即可求出宣传牌的高度.【详解】解:(1)过B作BGDE于G,在RtABF中,i=tanBAH=,BAH=30BH=AB=5(米).答:点B距水平面AE的高度BH为5米.(2)由(1)得:BH=5,AH=5,BG=AH+AE=5+15.在RtBGC中,CBG=45,CG=BG=5+

19、15.在RtADE中,DAE=60,AE=15,DE=AE=15.CD=CG+GEDE=5+15+515=20102.7(米).答:宣传牌CD高约2.7米.20、(1),;(2)是直角三角形,理由见解析;(3)存在,【分析】(1)已知了抛物线图象上的三点坐标,可用待定系数法求出该抛物线的解析式,进而可用配方法或公式法求得顶点D的坐标(2)根据B、C、D的坐标,可求得BCD三边的长,然后判断这三条边的长是否符合勾股定理即可(3)假设存在符合条件的P点;首先连接AC,根据A、C的坐标及(2)题所得BDC三边的比例关系,即可判断出点O符合P点的要求,因此以P、A、C为顶点的三角形也必与COA相似,那

20、么分别过A、C作线段AC的垂线,这两条垂线与坐标轴的交点也符合点P点要求,可根据相似三角形的性质(或射影定理)求得OP的长,也就得到了点P的坐标【详解】(1)设抛物线的解析式为由抛物线与y轴交于点,可知即抛物线的解析式为把代入解得抛物线的解析式为顶点D的坐标为 (2)是直角三角形过点D分别作x轴、y轴的垂线,垂足分别为E、F在中,在中,在中,是直角三角形(3)连接AC,根据两点的距离公式可得:,则有,可得,得符合条件的点为过A作交y轴正半轴于,可知,求得符合条件的点为过C作交x轴正半轴于,可知,求得符合条件的点为符合条件的点有三个:【点睛】本题考查了抛物线的综合问题,掌握抛物线的性质以及解法是

21、解题的关键21、(1);(2);【分析】(1)先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号相同的占1种,然后根据概率的概念计算即可;(2)由(1)可知有16种等可能的结果数,其中两次取出的小球标号的和等于1的有3种,进而可求出其概率【详解】画树状图如图(1)共有种等可能的结果,两次取出的小球标号相同的共种情况,两次取出的小球标号相同的概率为(2)两次取出的小球标号的和等于的情况共有种,两次取出的小球标号的和等于的概率为【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意

22、此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比22、30【分析】设该单位一共组织了x位职工参加旅游观光活动,求出当人数为20时的总费用及人均收费10元时的人数,即可得出20 x1,再利用总费用人数人均收费,即可得出关于x的一元二次方程,解之取其较小值即可得出结论【详解】解:设该单位一共组织了x位职工参加旅游观光活动,5002010000(元),1000012000,(50010)15(人),120001034(人),34不为整数,20 x20+15,即20 x1依题意,得:x50010(x20)12000,整理,得:x270 x+12000,解得:x130,x240

23、(不合题意,舍去)答:该单位一共组织了30位职工参加旅游观光活动【点睛】本题考查了一元二次方程的应用,正确理解题意,找准题中等量关系列出方程是解题的关键.23、(1)反比例函数为;一次函数解析式为yx1;(2)x2或0 x1【分析】(1)由A的坐标易求反比例函数解析式,从而求B点坐标,进而求一次函数的解析式;(2)观察图象,找出一次函数的图象在反比例函数的图象上方时,x的取值即可【详解】解:(1)把A(2,1)代入y,得m2,即反比例函数为y,将B(1,n)代入y,解得n2,即B(1,2),把A(2,1),B(1,2)代入ykx+b,得解得k1,b1,所以yx1;(2)由图象可知:当一次函数的值反比例函数的值时,x2或0 x1【点睛】此题考查的是反比例函数和一次函数的综合题,掌握利用待定系数法求一次函数、反比例函数的解析式和根据图象求自变量的取值范围是解决此题的关键24、(1)(-1,-1);(2)整点有5个【分析】(1)可先求抛物线的顶点坐标,然后找到该店关于x轴对称的点的坐标即为抛物线的顶点坐标.(2) 先求出当时,抛物线和的解析式并画在同一个直角坐标系中即可确定整点的个数;结合整点的个数,确定抛物线与轴的一个交点的横坐标的取值范围,从而代入抛物线解析式中确定m的取值范围.【详解】(1)的顶点坐标为 抛物线:沿轴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论