2023届河北省唐山路北区七校联考九年级数学第一学期期末预测试题含解析_第1页
2023届河北省唐山路北区七校联考九年级数学第一学期期末预测试题含解析_第2页
2023届河北省唐山路北区七校联考九年级数学第一学期期末预测试题含解析_第3页
2023届河北省唐山路北区七校联考九年级数学第一学期期末预测试题含解析_第4页
2023届河北省唐山路北区七校联考九年级数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1已知点P(1,-3)在反比例函数的图象上,则的值是A3B-3CD2已知,是反比例函数的图象上的三点,且,则、的大小关系是( )ABCD3向空中发射一枚炮弹,第秒时的高度为米,且高度与时间的关系为,若此炮弹在第秒与第秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A第秒B第秒C第秒D第秒4

2、中,若,则的长为( )ABCD55如图,相交于点,若,则与的面积之比为( )ABCD6用16米长的铝制材料制成一个矩形窗框,使它的面积为9平方米,若设它的一边长为x,根据题意可列出关于x的方程为( )ABCD7成语“水中捞月”所描述的事件是( )A必然事件B随机事件C不可能事件D无法确定8如图,点A,B,C在O上,A=36,C=28,则B=()A100B72C64D369如图,正方形网格中,每个小正方形的边长均为1个单位长度 ,在格点上,现将线段向下平移个单位长度,再向左平移个单位长度,得到线段,连接,若四边形是正方形,则的值是( )A3B4C5D610如图,平行四边形ABCD中,EFBC,A

3、E:EB=2:3,EF=4,则AD的长为( )AB8C10D16二、填空题(每小题3分,共24分)11若是方程的一个根,则代数式的值等于_12如图,在边长为4的菱形ABCD中,A=60,M是AD边的中点,点N是AB边上一动点,将AMN沿MN所在的直线翻折得到AMN,连接AC,则线段AC长度的最小值是_13如图,两弦AB、CD相交于点E,且ABCD,若B60,则A等于_度14如图,A2B2B3 是全等的等边三角形,点 B,B1,B2,B3 在同一条 直线上,连接 A2B 交 AB1 于点 P,交 A1B1 于点 Q,则 PB1QB1 的值为_15在ABC中,AB10,AC8,B为锐角且,则BC_

4、16如图,二次函数的图象与轴交于点,与轴的一个交点为,点在抛物线上,且与点关于抛物线的对称轴对称已知一次函数的图象经过两点,根据图象,则满足不等式的的取值范围是_17将直角边长为5cm的等腰直角ABC绕点A逆时针旋转15后,得到ABC,则图中阴影部分的面积是_cm118如图是小明在抛掷图钉的试验中得到的图钉针尖朝上的折线统计图,请你估计抛掷图钉针尖朝上的概率是_三、解答题(共66分)19(10分)解方程:(1)(2)20(6分)如图,某城建部门计划在新修的城市广场的一块长方形空地上修建一个面积为1200m2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知长方形空地的长为50m,宽为40

5、m(1)求通道的宽度;(2)某公司希望用80万元的承包金额承揽修建广场的工程,城建部门认为金额太高需要降价,通过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率21(6分)如图,在平面直角坐标系中,抛物线与轴交于点,点,与轴交于点,连接,位于轴右侧且垂直于轴的动直线,沿轴正方向从运动到(不含点和点),且分别交抛物线、线段以及轴于点,连接,(1)求抛物线的表达式;(2)如图1,当直线运动时,求使得和相似的点点的横坐标;(3)如图1,当直线运动时,求面积的最大值;(4)如图2,抛物线的对称轴交轴于点,过点作交轴于点点、分别在对称轴和轴上运动,连接、当的面积最大时,请

6、直接写出的最小值22(8分)已知二次函数yx2+bx+c的图象经过点A(1,0),C(0,3).(1)求二次函数的解析式;(2)在图中,画出二次函数的图象;(3)根据图象,直接写出当y0时,x的取值范围23(8分)如图,以AB边为直径的O经过点P,C是O上一点,连结PC交AB于点E,且ACP=60,PA=PD(1)试判断PD与O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CECP的值24(8分)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角,求树高AB(结果

7、保留根号).25(10分)一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4,另有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区域,分别标有数字1,2,3(如图所示)小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去(1)用树状图法或列表法求出小颖参加比赛的概率;(2)你认为游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平26(10分)解方程(1)(用配方法)(2) (3)计算:参考答案一、选择题(每小题3分,共30分)1、B【解析】根据

8、点在曲线上,点的坐标满足方程的关系,将P(1,-1)代入,得,解得k=1故选B2、C【分析】先根据反比例函数y=的系数20判断出函数图象在一、三象限,在每个象限内,y随x的增大而减小,再根据x1x200,则图象在第一、三象限,在每个象限内,y随x的增大而减小,又x1x20 x3,y2y1y3.故选C.【点睛】本题考查了反比例函数图象上点的坐标特征.3、C【分析】根据二次函数图像的对称性,求出对称轴,即可得到答案.【详解】解:根据题意,炮弹在第秒与第秒时的高度相等,抛物线的对称轴为:秒,第12秒距离对称轴最近,上述时间中,第12秒时炮弹高度最高;故选:C.【点睛】本题考查了二次函数的性质和对称性

9、,解题的关键是掌握二次函数的对称性进行解题.4、B【分析】根据题意,可得= ,又由AB=4,代入即可得AC的值.【详解】解:中,=.AC=AB= .故选B.【点睛】本题考查解直角三角形、勾股定理,解答本题的关键是明确题意,利用锐角三角函数和勾股定理解答5、B【分析】先证明两三角形相似,再利用面积比是相似比的平方即可解出.【详解】ABCD,A=D,B=C,ABODCO,AB=1,CD=2,AOB和DCO相似比为:1:2.AOB和DCO面积比为:1:4.故选B.【点睛】本题考查相似三角形的面积比,关键在于牢记面积比和相似比的关系.6、B【分析】一边长为x米,则另外一边长为:8-x,根据它的面积为9

10、平方米,即可列出方程式【详解】一边长为x米,则另外一边长为:8-x,由题意得:x(8-x)=9,故选:B【点睛】此题考查由实际问题抽相出一元二次方程,解题的关键读懂题意列出方程式7、C【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可【详解】水中捞月是不可能事件故选C【点睛】本题考查了必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件8、C【详解】试题分析:设AC和OB交于点D,根据同弧所对的圆心角的度数等于圆周角度数2倍可得:O=2A=72,根据C=

11、28可得:ODC=80,则ADB=80,则B=180-A-ADB=180-36-80=64,故本题选C9、A【分析】根据线段的平移规律可以看出,线段AB向下平移了1个单位,向左平移了2个单位,相加即可得出【详解】解:根据线段的平移规律可以看出,线段AB向下平移了1个单位,向左平移了2个单位,得到AB,则m+n=1故选:A【点睛】本题考查的是线段的平移问题,观察图形时要考虑其中一点就行.10、C【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,可证明AEFABC,再根据相似三角形的对应边成比例可解得BC的长,而在ABCD中,AD=BC,问题得解【详解】解:EFBC

12、AEFABC, EF:BC=AE:AB, AE:EB=2:3, AE:AB=2:5, EF=4, 4:BC=2:5, BC=1, 四边形ABCD是平行四边形, AD=BC=1【点睛】本题考查(1)、相似三角形的判定与性质;(2)、平行四边形的性质二、填空题(每小题3分,共24分)11、1【分析】把代入已知方程,求得,然后得的值即可【详解】解:把代入已知方程得,故答案为1【点睛】本题考查一元二次方程的解以及代数式求值,注意已知条件与待求代数式之间的关系12、 【详解】解:如图所示:MA是定值,AC长度取最小值时,即A在MC上时,过点M作MFDC于点F,在边长为2的菱形ABCD中,A=60,M为A

13、D中点,2MD=AD=CD=2,FDM=60,FMD=30,FD=MD=1,FM=DMcos30=,AC=MCMA=故答案为【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A点位置是解题关键13、30【解析】首先根据圆周角定理,得A=BDC,再根据三角形的内角和定理即可求得BDC的度数,从而得出结论【详解】ABCD,DEB=90,B60BDC90-B=90-60=30,A=BDC=30,故答案为30.【点睛】综合运用了圆周角定理以及三角形的内角和定理14、【分析】根据题意说明PB1A2 B3,A1B1A2B2,从而说明BB1PBA2 B3,BB1QBB2A2,再得到PB1 和A

14、2B3的关系以及QB1和A2B2的关系,根据A2B3=A2B2,得到PB1和QB1的比值.【详解】解:ABB1,A1B1B2,A2B2B3是全等的等边三角形,BB1P=B3,A1B1 B2=A2B2B3,PB1A2B3,A1B1A2B2,BB1PBA2 B3,BB1QBB2A2,,,PB1QB1=A2B3A2 B2=2:3.故答案为:.【点睛】本题考查了相似三角形的判定和性质,等边三角形的性质,平行线的判定,正确的识别图形是解题的关键15、8+2或82【分析】分两种情况进行解答,即ACB为锐角,ACB为钝角,分别画出图形,利用三角函数解直角三角形即可【详解】过点A作ADBC,垂足为D,当ACB

15、为锐角时,如图1,在RtABD中,BDABcosB108,AD6,在RtACD中,CD2,BCBD+CD8+2,当ACB为钝角时,如图2,在RtABD中,BDABcosB108,AD6,在RtACD中,CD2,BCBDCD82,故答案为:8+2或82【点睛】考查直角三角形的边角关系,理解锐角三角函数的意义是正确解答的关键,分类讨论在此类问题中经常用到16、【分析】将点A的坐标代入二次函数解析式求出m的值,再根据二次函数解析式求出点C的坐标,然后求出点B的坐标,点A、B之间部分的自变量x的取值范围即为不等式的解集.【详解】解:抛物线经过点抛物线解析式为点坐标对称轴为x=-2,B、C关于对称轴对称

16、,点坐标由图象可知,满足的的取值范围为故答案为:【点睛】本题考查了利用二次函数的性质来确定系数m和图象上点B的坐标,而根据图象可知满足不等式的的取值范围是在B、A两点之间.17、【解析】等腰直角ABC绕点A逆时针旋转15后得到ABC,CAC=15,CAB=CABCAC=4515=30,AC=AC=5,阴影部分的面积=5tan305=18、0.1【分析】利用频数统计图可得,在试验中图钉针尖朝上的频率在0.1波动,然后利用频率估计概率可得图钉针尖朝上的概率【详解】解:由统计图得,在试验中得到图钉针尖朝上的频率在0.1波动,所以可根据计图钉针尖朝上的概率为0.1【点睛】本题考查了频数统计图用频率估计

17、概率,解决本题的关键是正确理解题意,明确频率和概率之间的联系和区别.三、解答题(共66分)19、(1),;(2)x1=2,x2=-1【分析】(1)方程移项后,利用完全平方公式配方,开方即可求出解;(2)提取公因式化为积的形式,然后利用两因式相乘积为0,两因式中至少有一个为0,转化为两个一元一次方程来求解【详解】解:(1)方程整理得:,配方得:,即,开方得:,解得:,;(2)方程变形得:,即,即或,解得【点睛】本题考查解一元二次方程熟练掌握解一元二次方程的方法,并能结合实际情况选择合适的方法是解决此题的关键20、(1)5m,(2)20%【分析】(1)设通道的宽度为x米由题意(502x)(402x

18、)1200,解方程即可;(2)可先列出第一次降价后承包金额的代数式,再根据第一次的承包金额列出第二次降价的承包金额的代数式,然后令它等于51.2即可列出方程【详解】(1)设通道宽度为xm,依题意得(502x)(402x)1200,即x250 x+2250解得x15,x240(舍去)答:通道的宽度为5m(2)设每次降价的百分率为x,依题意得80(1x)251.2解得x10.220%,x21.8(舍去)答:每次降价的百分率为20%【点睛】本题考查了一元二次方程的应用,根据题意,正确列出关系式是解题的关键.21、(1);(2);(3);(4)1【分析】(1)待定系数法即可求抛物线的表达式;(2)由得

19、到 ,从而有,点P的纵坐标为k,则,找到P点横纵坐标之间的关系,代入二次函数的表达式中即可求出k的值,从而可求P的横坐标;(3)先用待定系数法求出直线BC的解析式,然后设点,从而表示出,利用二次函数的性质求最大值即可;(4)通过构造直角三角形将 转化,要使取最小值,P,H,K应该与KM共线,通过验证发现K点正好在原点,然后根据特殊角的三角函数求值即可【详解】(1)设抛物线的表达式为 将, 代入抛物线的表达式中得 解得 抛物线的表达式为(2)直线lx轴 , 设点P的纵坐标为k,则 将 代入二次函数表达式中,解得 或(舍去)此时P点的横坐标为 (3)设直线BC的解析式为 将, 代入得 解得 直线B

20、C的解析式为设点 当 时,PD取最大值,最大值为 面积的最大值为(4)将y轴绕G点逆时针旋转60,作KMGM于M,则 ,连接OP 要使取最小值,P,H,K应该与KM共线,此时而此时面积的最大,点 说明此时K点正好在原点O处 即 的最小值为4+6=1【点睛】本题主要考查二次函数与几何综合,相似三角形的判定及性质,掌握二次函数的图象和性质,相似三角形的判定及性质是解题的关键22、(1)yx2+2x+1;(2)该函数图象如图所示;见解析(1)x的取值范围x1或x1【分析】(1)用待定系数法将A(1,0),C(0,1)坐标代入yx2+bx+c,求出b和c即可.(2)利用五点绘图法分别求出两交点,顶点,

21、以及与y轴的交点和其关于对称轴的对称点,从而绘图即可.(1)根据A,B,C三点画出函数图像,观察函数图像即可求出x的取值范围.【详解】解:(1)二次函数yx2+bx+c的图象经过点A(1,0),C(0,1),得,即该函数的解析式为yx2+2x+1;(2)yx2+2x+1(x1)2+4,该函数的顶点坐标是(1,4),开口向上,过点(1,0),(1,0),(0,1),(2,1),该函数图象如右图所示;(1)由图象可得,当y0时,x的取值范围x1或x1【点睛】本题考查二次函数综合问题,结合待定系数法求二次函数解析式以及二次函数性质和二次函数图像的性质进行分析.23、(1)PD是O的切线证明见解析.(

22、2)1.【解析】试题分析:(1)连结OP,根据圆周角定理可得AOP=2ACP=120,然后计算出PAD和D的度数,进而可得OPD=90,从而证明PD是O的切线;(2)连结BC,首先求出CAB=ABC=APC=45,然后可得AC长,再证明CAECPA,进而可得,然后可得CECP的值试题解析:(1)如图,PD是O的切线证明如下:连结OP,ACP=60,AOP=120,OA=OP,OAP=OPA=30,PA=PD,PAO=D=30,OPD=90,PD是O的切线(2)连结BC,AB是O的直径,ACB=90,又C为弧AB的中点,CAB=ABC=APC=45,AB=4,AC=Absin45=C=C,CAB=APC,CAECPA,CPCE=CA2=()2=1考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型24、6+【分析】如下图,过点C作CFAB于点F,设AB长为x,则易得AF=x-4,在RtACF中利用的正切函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论