版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1若O的半径为5cm,点A到圆心O的距离为4cm,那么点A与O的位置关系是A点A在圆外B点A在圆上C点A在圆内D不能确定2如图,点()是反比例函数上的动点,过
2、分别作轴,轴的垂线,垂足分别为,.随着的增大,四边形的面积( )A增大B减小C不确定D不变3如图,O的半径为5,将长为8的线段PQ的两端放在圆周上同时滑动,如果点P从点A出发按逆时针方向滑动一周回到点A,在这个过程中,线段PQ扫过区域的面积为()A9B16C25D644如图,在平面直角坐标系中,正方形ABCD顶点B(1,1),C在x轴正半轴上,A在第二象限双曲线y上,过D作DEx轴交双曲线于E,连接CE,则CDE的面积为( )A3BC4D5如图,正五边形ABCD内接于O,连接对角线AC,AD,则下列结论:BCAD;BAE=3CAD;BACEAD;AC=2CD其中判断正确的是( )ABCD6下列
3、方程中,是关于x的一元二次方程是()ABx2+2xx21Cax2+bx+c0D3(x+1)22(x+1)7如图,两点在反比例函数的图象上,两点在反比例函数的图象上,轴于点,轴于点,则的值是( ) A2B3C4D68二次根式有意义的条件是( )Ax1Bx1Cx1Dx19如图,在平行四边形ABCD中,点M为AD边上一点,且,连接CM,对角线BD与CM相交于点N,若的面积等于3,则四边形ABNM的面积为A8B9C11D1210如图,PA是O的切线,切点为A,PO的延长线交O于点B,若P=40,则B的度数为 ( )A20B25C40D50112018年某市初中学业水平实验操作考试,要求每名学生从物理、
4、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )ABCD12如图,二次函数的图象过点,下列说法:;若是抛物线上的两点,则;当时,其中正确的个数为( )A4B3C2D1二、填空题(每题4分,共24分)13如图,河坝横断面迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是 14计算sin60tan60cos45cos60的结果为_15若函数y(k2)是反比例函数,则k_.16已知关于的方程有两个不相等的实数根,则的取值范围是_17抛物线y3(x1)2+2的开口向_,对称轴为_,顶点坐标为_18如图,在直角坐标系中
5、,正方形ABCD的边BC在x轴上,其中点A的坐标为(1,2),正方形EFGH的边FG在x轴上,且H的坐标为(9,4),则正方形ABCD与正方形EFGH的位似中心的坐标是_三、解答题(共78分)19(8分)问题提出:如图1,在等边ABC中,AB9,C半径为3,P为圆上一动点,连结AP,BP,求AP+BP的最小值(1)尝试解决:为了解决这个问题,下面给出一种解题思路,通过构造一对相似三角形,将BP转化为某一条线段长,具体方法如下:(请把下面的过程填写完整)如图2,连结CP,在CB上取点D,使CD1,则有又PCD PDBPAP+BPAP+PD当A,P,D三点共线时,AP+PD取到最小值请你完成余下的
6、思考,并直接写出答案:AP+BP的最小值为 (2)自主探索:如图3,矩形ABCD中,BC6,AB8,P为矩形内部一点,且PB1,则AP+PC的最小值为 (请在图3中添加相应的辅助线)(3)拓展延伸:如图1,在扇形COD中,O为圆心,COD120,OC1OA2,OB3,点P是上一点,求2PA+PB的最小值,画出示意图并写出求解过程20(8分)如图,在矩形ABCD中,AB=2,E为BC上一点,且BE=1,AED=90,将AED绕点E顺时针旋转得到,AE交AD于P, DE交CD于Q,连接PQ,当点Q与点C重合时,AED停止转动(1)求线段AD的长;(2)当点P与点A不重合时,试判断PQ与的位置关系,
7、并说明理由;(3)求出从开始到停止,线段PQ的中点M所经过的路径长21(8分)如图,在中, 垂足为平分,交于点,交于点.(1)若,求的长;(2)过点作的垂线,垂足为,连接,试判断四边形的形状,并说明原因.22(10分)教材习题第3题变式如图,AD是ABC的角平分线,过点D分别作AC和AB的平行线,交AB于点E,交AC于点F.求证:四边形AEDF是菱形23(10分)如图,是的弦,过的中点作,垂足为,过点作直线交的延长线于点,使得.(1)求证:是的切线;(2)若,求的边上的高.(3)在(2)的条件下,求的面积.24(10分)如图,在平面直角坐标系中,一次函数y=kx+b(k0)的图象与反比例函数y
8、=(m0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(1,0),且tanACO=1(1)求该反比例函数和一次函数的解析式;(1)求点B的坐标25(12分)学生会组织周末爱心义卖活动,义卖所得利润将全部捐献给希望工程,活动选在一块长米、宽米的矩形空地上.如图,空地被划分出个矩形区域,分别摆放不同类别的商品,区域之间用宽度相等的小路隔开,已知每个区域的面积均为平方米,小路的宽应为多少米?26锐角中,为边上的高线,两动点分别在边上滑动,且,以为边向下作正方形(如图1),设其边长为(1)当恰好落在边上(如图2)时,求;(2)正方形与公共部分的面积为时,求的值参考答案一、
9、选择题(每题4分,共48分)1、C【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用dr时,点在圆外;当d=r时,点在圆上;当dr时,点在圆内判断出即可【详解】解:O的半径为5cm,点A到圆心O的距离为4cm,dr,点A与O的位置关系是:点A在圆内,故选C2、D【分析】由长方形的面积公式可得出四边形的面积为mn,再根据点Q在反比例函数图象上,可知 ,从而可判断面积的变化情况【详解】点 四边形的面积为,点()是反比例函数上的动点 四边形的面积为定值,不会发生改变故选:D【点睛】本题主要考查反比例函数比例系数的几何意义,掌握反比例函数比例系数的几何意义是解题的关键3、B【
10、分析】如图,线段PQ扫过的面积是图中圆环面积作OEPQ于E,连接OQ求出OE即可解决问题【详解】解:如图,线段PQ扫过的面积是图中圆环面积,作OEPQ于E,连接OQOEPQ,EQPQ4,OQ5,OE,线段PQ扫过区域的面积523216,故选:B【点睛】本题主要考查了轨迹,解直角三角形,垂径定理,解题的关键是理解题意,学会添加常用辅助线.4、B【分析】作辅助线,构建全等三角形:过A作GHx轴,过B作BGGH,过C作CMED于M,证明AHDDMCBGA,设A(x,),结合点B 的坐标表示:BGAHDM1x,由HQCM,列方程,可得x的值,进而根据三角形面积公式可得结论【详解】过A作GHx轴,过B作
11、BGGH,过C作CMED于M,设A(x,),四边形ABCD是正方形,ADCDAB,BADADC90,BAG=ADH=DCM,AHDDMCBGA(AAS),BGAHDM1x,AGCMDH1,AH+AQCM,11x,解得:x2,A(2,2),CMAGDH13,BGAHDM1x1,点E的纵坐标为3,把y3代入y得:x,E(,3),EH2,DEDHHE3,SCDEDECM3故选:B【点睛】本题主要考查反比例函数图象和性质与几何图形的综合,掌握“一线三垂直”模型是解题的关键5、B【分析】根据圆的正多边形性质及圆周角与弦的关系解题即可【详解】解:BCAD,故本选项正确;BC=CD=DE,BAC=CAD=D
12、AE,BAE=3CAD,故本选项正确;在BAC和EAD中,BA=AE,BC=DE,B=E,BACEAD(SAS),故本选项正确;AB+BCAC,2CDAC,故本选项错误故答案为【点睛】此题考查圆的正多边形性质及圆周角与弦的关系,理解定义是关键6、D【解析】利用一元二次方程的定义判断即可【详解】A、3不是整式方程,不符合题意;B、方程整理得:2x+10,是一元一次方程,不符合题意;C、ax2+bx+c0没有条件a0,不一定是一元二次方程,不符合题意;D、3(x+1)22(x+1)是一元二次方程,符合题意,故选:D【点睛】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键7、D
13、【分析】连接OA、OB、OC、OD,由反比例函数的性质得到,结合两式即可得到答案.【详解】连接OA、OB、OC、OD,由题意得,AC=3,BD=2,EF=5,解得OE=2,故选:D.【点睛】此题考查反比例函数图象上点的坐标特点,比例系数与三角形面积的关系,掌握反比例函数解析式中k的几何意义是解题的关键.8、C【解析】根据二次根式有意义,被开方数为非负数,列不等式求出x的取值范围即可.【详解】二次根式有意义,x-10,x1,故选:C.【点睛】本题考查二次根式有意义的条件,要使二次根式有意义,被开方数为非负数;熟练掌握二次根式有意义的条件是解题关键.9、C【分析】根据平行四边形判断MDNCBN,利
14、用三角形高相等,底成比例即可解题.【详解】解:四边形是平行四边形,易证MDNCBN,MD:BC=DN:BN=MN:CN=1:3,SMDN: SDNC=1:3, SDNC: SABD=1:4,(三角形高相等,底成比例)=3,SMDN=1,SDNC=3,SABD=12,S四边形 =11,故选C.【点睛】本题考查了相似三角形的性质,相似三角形面积比等于相似比的平方,中等难度,利用三角形高相等,底成比例是解题关键.10、B【解析】连接OA,由切线的性质可得OAP=90,继而根据直角三角形两锐角互余可得AOP=50,再根据圆周角定理即可求得答案.【详解】连接OA,如图:PA是O的切线,切点为A,OAAP
15、,OAP=90,P=40,AOP=90-40=50,B=AOB=25,故选B.【点睛】本题考查了切线的性质,圆周角定理,正确添加辅助线,熟练掌握切线的性质定理是解题的关键.11、D【分析】直接利用树状图法列举出所有的可能,进而利用概率公式求出答案【详解】解:如图所示:一共有9种可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是:,故选D.【点睛】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键12、B【分析】根据二次函数的性质对各项进行判断即可【详解】A.函数图象过点,对称轴为,可得,正确;B.,当,正确;C.根据二次函数的对称性,的纵坐标等于的纵坐标,所以,错误;D.由图象
16、可得,当时,正确;故答案为:B【点睛】本题考查了二次函数的问题,掌握二次函数的图象以及性质是解题的关键二、填空题(每题4分,共24分)13、6米.【解析】试题分析:在RtABC中,已知坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长试题解析:在RtABC中,BC=3米,tanA=1:;AC=BCtanA=3米,AB=米考点:解直角三角形的应用14、1【分析】直接利用特殊角的三角函数值分别代入求出答案【详解】解:原式=1【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键15、-1【解析】根据反比例函数的定义列出方程,解出k的值即可【详解】解:若函数y(k
17、1)是反比例函数,则解得k1,故答案为116、【详解】根据题意得:=(2)24m=44m0,解得m.故答案为m.【点睛】本题考查一元二次方程ax2+bx+c=0(a0)根的判别式:(1)当=b24ac0时,方程有两个不相等的实数根;(2)当=b24ac=0时,方程有有两个相等的实数根;(3)当=b24ac0时,方程没有实数根.17、下 直线x1 (1,2) 【分析】根据y=a(x-h)2+k的性质即可得答案【详解】-30,抛物线的开口向下,y3(x1)2+2是二次函数的顶点式,该抛物线的对称轴是直线x1,顶点坐标为(1,2),故答案为:下,直线x1,(1,2)【点睛】本题主要考查了二次函数的性
18、质,熟练掌握二次函数的三种形式及性质是解题关键18、(3,0)或(,)【分析】连接HD并延长交x轴于点P,根据正方形的性质求出点D的坐标为(3,2),证明PCDPGH,根据相似三角形的性质求出OP,另一种情况,连接CE、DF交于点P,根据待定系数法分别求出直线DF解析式和直线CE解析式,求出两直线交点,得到答案【详解】解:连接HD并延长交x轴于点P,则点P为位似中心,四边形ABCD为正方形,点A的坐标为(1,2),点D的坐标为(3,2),DC/HG,PCDPGH,即,解得,OP3,正方形ABCD与正方形EFGH的位似中心的坐标是(3,0),连接CE、DF交于点P,由题意得C(3,0),E(5,
19、4),D(3,2),F(5,0),求出直线DF解析式为:yx+5,直线CE解析式为:y2x6,解得直线DF,CE的交点P为(,),所以正方形ABCD与正方形EFGH的位似中心的坐标是(,),故答案为:(3,0)或(,)【点睛】本题考查的是位似变换的概念和性质、相似三角形的判定和性质,位似图形的定义:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心三、解答题(共78分)19、(1)BCP,PCD,BCP,;(2)2;(3)作图与求解过程见解析,2PA+PB的最小值为【分析】(1)连结AD,过点A作AFCB于点F,AP+B
20、PAP+PD,要使AP+BP最小,AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即可求解;(2)在AB上截取BF2,连接PF,PC,AB8,PB1,BF2,证明ABPPBF,当点F,点P,点C三点共线时,AP+PC的值最小,即可求解;(3)延长OC,使CF1,连接BF,OP,PF,过点F作FBOD于点M,确定,且AOPAOP,AOPPOF,当点F,点P,点B三点共线时,2AP+PB的值最小,即可求解【详解】解:(1)如图1,连结AD,过点A作AFCB于点F,AP+BPAP+PD,要使AP+BP最小,AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小
21、值为AD,AC9,AFBC,ACB60CF3,AF;DFCFCD312,AD,AP+BP的最小值为;故答案为:;(2)如图2,在AB上截取BF2,连接PF,PC,AB8,PB1,BF2,且ABPABP,ABPPBF,PFAP,AP+PCPF+PC,当点F,点P,点C三点共线时,AP+PC的值最小,CF,AP+PC的值最小值为2,故答案为:2;(3)如图3,延长OC,使CF1,连接BF,OP,PF,过点F作FBOD于点M,OC1,FC1,FO8,且OP1,OA2,且AOPAOPAOPPOF,PF2AP2PA+PBPF+PB,当点F,点P,点B三点共线时,2AP+PB的值最小,COD120,FOM
22、60,且FO8,FMOMOM1,FM1,MBOM+OB1+37FB,2PA+PB的最小值为【点睛】本题主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,解本题的关键是根据材料中的思路构造出相似三角形.20、(1)5;(2),理由见解析;(3)【分析】(1)求出AE,证明ABEDEA,由可求出AD的长;(2)过点E作EFAD于点F,证明PEFQEC,再证EPQAED,可得出EPQEAD,则结论得证;(3)由(2)知PQAD,取AD的中点N,可得出PEM为定值,则点M的运动路径为线段,即从AD的中点到DE的中点,由中位线定理可得出答案【详解】解:(1)AB2,BE1,B90,AE,AED9
23、0,EAD+ADE90,矩形ABCD中,ABCBAD90,BAE+EAD90,BAEADE,ABEDEA,AD5;(2)PQAD,理由如下:,AED902,ADBC5,ECBCBE514,过点E作EFAD于点F,则FEC90,AEDAED90,PEFCEQ,CPFE90,PEFQEC,PQAD;(3)连接EM,作MNAE于N,由(2)知PQAD,EPQAEAP,又PEQ为直角三角形,M为PQ中点,PMME,EPQPEM,EPFEAP+AEA,NEMPEM+AEAEPFNEM,又PFEENM90,PEFEMN,为定值,又EFAB2,MN为定值,即M的轨迹为平行于AE的线段,M初始位置为AD中点,
24、停止位置为DE中点,M的轨迹为ADE的中位线,线段PQ的中点M所经过的路径长【点睛】本题考查了矩形的性质,相似三角形的判定与性质,勾股定理,平行线的判定,中位线定理等知识,熟练掌握相似三角形的判定与性质是解题的关键21、(1)CE2;(2)菱形,理由见解析.【分析】(1)根据题意易求得ACDCAFBAF30,可得AE=CE,然后利用30角的三角函数可求得CD的长、DE与AE的关系,进一步可得CE与CD的关系,进而可得结果;(2)根据角平分线的性质可得CFGF,根据HL可证RtACFRtAGF,从而得AFCAFG,由平行线的性质和等量代换可得CEFCFE,可得CECF,进而得CEFG,根据一组对
25、边平行且相等可得四边形CEGF是平行四边形,进一步即得结论【详解】解:(1)ACB90,B30,CAB60,CDAB,ACD30,AC6,AF平分CAB,CAFBAF30,ACDCAF,CEAE2DE,CE2;(2)四边形CEGF是菱形证明:FGAB,FCAC,AF平分CAB,ACFAGF90,CFGF,在RtACF与RtAGF中,AF=AF,CF=GF,RtACFRtAGF(HL),AFCAFG,CDAB,FGAB,CDFG,CEFEFG,CEFCFE,CECF,CEFG,CEFG,四边形CEGF是平行四边形,CECF,平行四边形CEGF是菱形【点睛】本题考查了直角三角形的性质、角平分线的性
26、质、锐角三角函数、菱形的判定和直角三角形全等的判定和性质等知识,属于常考题型,熟练掌握上述基本知识是解题的关键22、见解析【分析】由已知易得四边形AEDF是平行四边形,由角平分线和平行线的定义可得FAD=FDA,根据等角对等边可得AF=DF,再根据邻边相等的四边形是菱形可得结论【详解】证明:AD是ABC的角平分线,EAD=FAD,DEAC,DFAB,四边形AEDF是平行四边形,EAD=ADF,FAD=FDA,AF=DF,四边形AEDF是菱形【点睛】此题主要考查了菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形23、(1)见解析;(2)4.5;(3)27【分析】(1)根据等腰三角形的性质可得
27、,结合切线的判定方法可得结论;(2)过点作于点,连接,结合中点及等腰三角形的性质可得,利用勾股定理可得DF的长;(3)根据两组对应角分别相等的两个三角形相似可得,利用相似三角形对应线段成比例可求得EO长,由三角形面积公式求解即可.【详解】(1)证明:,是圆的半径,是的切线;(2)如图,过点作于点,连接,点是的中点,又,(3),由(2)得 即,得,的面积是:.【点睛】本题是圆与三角形的综合题,涉及的知识点主要有切线的判定与性质、垂径定理、勾股定理、相似三角形的判定和性质,明确题意,确定所求问题的条件是解题的关键.24、(1)反比例函数的解析式为,一次函数的解析式为y=1x+4;(1)点B坐标为(2,1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贝宁农产品独特品种种植行业市场发展潜力及投资布局规划分析研究报告
- 2025年城口县幼儿园教师招教考试备考题库含答案解析(夺冠)
- 2025年定襄县幼儿园教师招教考试备考题库及答案解析(必刷)
- 苏轼文学创作企业市场现状技术分析及投资可行性评估发展策略研究报告
- 芬兰林业和造纸行业市场供需分析及投资评估规划分析研究报告
- 航空货运行业市场供需分析及技术发展报告
- 2025年布拖县幼儿园教师招教考试备考题库附答案解析
- 航海渔业行业市场供给需求分析及投资评估规划分析研究报告
- 2026年县乡教师选调考试《教师职业道德》题库含答案(典型题)
- 新型药物研发技术与市场需求结构分析研究报告
- 2026年日历表(每月一页、可编辑、可备注)
- 2025年大一上数学分析期末考试题及答案
- 品质异常通知单
- 鼎捷T100-V1.0-总账管理用户手册-简体
- GB 31644-2018食品安全国家标准复合调味料
- 援疆工作调研报告
- 加油站班前会记录表
- 机车-受电弓碳滑板磨耗检测
- 数学建模电子教材
- 部编版六年级语文上-第七、八单元非连续性文本阅读
- HB 4-1-2020 扩口管路连接件通用规范
评论
0/150
提交评论