2022-2023学年重庆十一中数学九年级第一学期期末达标测试试题含解析_第1页
2022-2023学年重庆十一中数学九年级第一学期期末达标测试试题含解析_第2页
2022-2023学年重庆十一中数学九年级第一学期期末达标测试试题含解析_第3页
2022-2023学年重庆十一中数学九年级第一学期期末达标测试试题含解析_第4页
2022-2023学年重庆十一中数学九年级第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1有一等腰三角形纸片ABC,ABAC,裁剪方式及相关数据如图所示,则得到的甲、乙、丙、丁四张纸片中,面积最大的是( )A甲B乙C丙D丁2如图,四边形ABCD内接于,如果它的一个外角DCE=64,那么BOD=( )A128B100C64D323一

2、元二次方程的根的情况是( )A有两个不相等的实数根B有两个相等的实数根C无实数根D无法确定4摄影兴趣小组的学生,将自己拍摄的照片向本组其他成员各赠送一张,全组共互赠了182张,若全组有x名学生,则根据题意列出的方程是( )Ax(x1)182 B0.5x(x1)182C0.5x(x1)182 Dx(x1)1825菱形的两条对角线长分别为6,8,则它的周长是()A5B10C20D246关于x的方程x2mx+60有一根是3,那么这个方程的另一个根是( )A5B5C2D27在ABC中,C90,AC8,BC6,则sinB的值是()ABCD8如图,ABC 中,AD 是中线,BC=8,B=DAC,则线段 A

3、C 的长为( )A4B4C6D49如图,已知O的直径AB弦CD于点E,下列结论中一定正确的是( )AAEOEBCEDECOECEDAOC6010在同一直角坐标系中,一次函数与反比例函数的图象大致是( )ABCD二、填空题(每小题3分,共24分)11如图,O为RtABC斜边中点,AB=10,BC=6,M、N在AC边上,若OMNBOC,点M的对应点是O,则CM=_12如图,O的半径为2,正八边形ABCDEFGH内接于O,对角线CE、DF相交于点M,则MEF的面积是_13将二次函数y=2x2的图像沿x轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为_.14已知方程x23x5=0的

4、两根为x1,x2,则x12+x22=_15如图,正ABO的边长为2,O为坐标原点,A在轴上,B在第二象限ABO沿轴正方向作无滑动的翻滚,经第一次翻滚后得A1B1O,则翻滚10次后AB中点M经过的路径长为_16在比例尺为1:1000000的地图上,量得甲、乙两地的距离是2.6cm,则甲、乙两地的实际距离为_千米.17某市为提倡居民节约用水,自今年1月1日起调整居民用水价格图中、分别表示去年、今年水费(元)与用水量()之间的关系小雨家去年用水量为150,若今年用水量与去年相同,水费将比去年多_元18在二次函数中,y与x的部分对应值如下表:x.-101234.y.-7-2mn-2-7.则m、n的大小

5、关系为m_n(填“”,“=”或“”)三、解答题(共66分)19(10分)解不等式组,并求出它的整数解20(6分)如图,二次函数y2x2+x+m的图象与x轴的一个交点为A(1,0),另一个交点为B,且与y轴交于点C(1)求m的值;(2)求点B的坐标;(3)该二次函数图象上是否有一点D(x,y)使SABDSABC,求点D的坐标21(6分)台州人民翘首以盼的乐清湾大桥于2018年9月28日正式通车,经统计分析,大桥上的车流速度(千米/小时)是车流密度(辆/千米)的函数,当桥上的车流密度达到220辆/千米的时候就造成交通堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米,车流速度为80千米

6、/小时,研究证明:当时,车流速度是车流密度的一次函数(1)求大桥上车流密度为50/辆千米时的车流速度;(2)在某一交通高峰时段,为使大桥上的车流速度大于60千米/小时且小于80千米/小时,应把大桥上的车流密度控制在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量车流速度车流密度,求大桥上车流量的最大值22(8分)如图,O的半径为1,等腰直角三角形ABC的顶点B的坐标为(,0),CAB=90,AC=AB,顶点A在O上运动(1)当点A在x轴的正半轴上时,直接写出点C的坐标;(2)当点A运动到x轴的负半轴上时,试判断直线BC与O位置关系,并说明理由;(3)设点A的

7、横坐标为x,ABC的面积为S,求S与x之间的函数关系式23(8分)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件根据市场调查发现,销售单价每增加2元,每天销售量会减少1件设销售单价增加元,每天售出件(1)请写出与之间的函数表达式;(2)当为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?24(8分)如图,在ABC中,D为AB边上一点,BACD(1)求证:ABCACD;(2)如果AC6,AD4,求DB的长25(10分)如图,正方形ABCD的顶点A在等腰直角三角形D

8、EF的斜边EF上,EF与BC相交于点G,连接CF(1)求证:DAEDCF;(2)求证:ABGCFG;(3)若正方形ABCD的的边长为2,G为BC的中点,求EF的长26(10分)如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为1.6m,求路灯杆AB的高度参考答案一、选择题(每小题3分,共30分)1、D【分析】根据相似三角形的性质求得甲的面积和丙的面积,进一步求得乙和丁的面积,比较即可求得【详解】解:如图:ADBC,ABAC,BDCD5+27,AD2+13,SABDSACDEFAD,EBFA

9、BD,()2,S甲,S乙,同理()2,S丙,S丁,面积最大的是丁,故选:D【点睛】本题考查了三角形相似的判定和性质,相似三角形面积的比等于相似比的平方解题的关键是熟练掌握相似三角形的判定和性质进行解题.2、A【详解】四边形ABCD内接于O,A=DCE=64,BOD=2A=128.故选A.3、A【解析】先求出的值,再根据一元二次方程根的情况与判别式的关系即可得出答案【详解】解:一元二次方程中,则原方程有两个不相等的实数根故选:A【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式的关系:(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根;(3)方程没有实数根4、D【解析】共送出照

10、片数=共有人数每人需送出的照片数根据题意列出的方程是x(x-1)=1故选D.5、C【分析】根据菱形的对角线互相垂直且平分这一性质解题即可.【详解】解:菱形的对角线互相垂直且平分,勾股定理求出菱形的边长=5,菱形的周长=20,故选C.【点睛】本题考查了菱形对角线的性质,属于简单题,熟悉概念是解题关键.6、C【分析】根据两根之积可得答案【详解】设方程的另一个根为a,关于x的方程x2mx+6=0有一根是3,3a=6,解得a=2,故选:C【点睛】本题主要考查了根与系数的关系,一元二次方程的根与系数的关系:若方程两个为,则7、A【分析】先根据勾股定理计算出斜边AB的长,然后根据正弦的定义求解【详解】如图

11、,C=90,AC=8,BC=6,AB=10,sinB=故选:A【点睛】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值也考查了勾股定理8、B【分析】由已知条件可得,可得出,可求出AC的长【详解】解:由题意得:B=DAC,ACB=ACD,所以,根据“相似三角形对应边成比例”,得,又AD 是中线,BC=8,得DC=4,代入可得AC=,故选B.【点睛】本题主要考查相似三角形的判定与性质灵活运用相似的性质可得出解答9、B【分析】根据垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧求解【详解】解:直径AB弦CDCEDE故选B.【点睛】本题考查垂径定理,本题属于基础应用题,只需

12、学生熟练掌握垂径定理,即可完成10、C【分析】由于本题不确定k的符号,所以应分k0和k0两种情况分类讨论,针对每种情况分别画出相应的图象,然后与各选择比较,从而确定答案【详解】(1)当k0时,一次函数y=kx-k经过一、三、四象限,反比例函数经过一、三象限,如图所示:(2)当k0时,一次函数y=kx-k经过一、二、四象限,反比例函数经过二、四象限如图所示:故选:C【点睛】本题考查了反比例函数、一次函数的图象灵活掌握反比例函数的图象性质和一次函数的图象性质是解决问题的关键,在思想方法方面,本题考查了数形结合思想、分类讨论思想二、填空题(每小题3分,共24分)11、【分析】根据直角三角形斜边中线的

13、性质可得OC=OA=OB=AB,根据等腰三角形的性质可得A=OCA,OCB=B,由相似三角形的性质可得ONC=OCB,可得OM=MN,利用等量代换可得ONC=B,即可证明CNOABC,利用外角性质可得ACO=MOC,可得OM=CM,即可证明CM=CN,利用勾股定理可求出AC的长,根据相似三角形的性质即可求出CN的长,即可求出CM的长.【详解】O为RtABC斜边中点,AB=10,BC=6,OC=OA=OB=AB=5,AC=8,A=OCA,OCB=B,OMNBOC,ONC=OCB,COB=OMN,MN=OM,ONC=B,CNOABC,即,解得:CN=,OMN=OCM+MOC,COB=A+OCA,O

14、CM=MOC,OM=CM,CM=MN=CN=.故答案为:【点睛】本题考查直角三角形斜边中线的性质、等腰三角形的性质及相似三角形的判定与性质,直角三角形斜边中线等于斜边的一半;熟练掌握相似三角形的判定定理是解题关键.12、2【分析】设OE交DF于N,由正八边形的性质得出DEFE,EOF45,由垂径定理得出OEFOFEOED,OEDF,得出ONF是等腰直角三角形,因此ONFNOF,OFM45,得出ENOEOM2,证出EMN是等腰直角三角形,得出MNEN,得出MFOE2,由三角形面积公式即可得出结果【详解】解:设OE交DF于N,如图所示:正八边形ABCDEFGH内接于O,DEFE,EOF45,OEF

15、OFEOED,OEDF,ONF是等腰直角三角形,ONFNOF,OFM45,ENOEOM2,OEFOFEOED67.5,CEDDFE67.54522.5,MEN45,EMN是等腰直角三角形,MNEN,MFMN+FNON+ENOE2,MEF的面积MFEN2(2)2;故答案为:2【点睛】本题考查的是圆的综合,难度系数较高,解题关键是根据正八边形的性质得出每个角的度数.13、y=2(x+2)2-3【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3【点

16、睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键14、1【解析】试题解析:方程的两根为 故答案为1.点睛:一元二次方程的两个根分别为 15、 (4+)【分析】根据题意先作B3Ex轴于E,观察图象可知为三次一个循环,求点M的运动路径,进而分析求得翻滚10次后AB中点M经过的路径长【详解】解:如图作B3Ex轴于E,可知OE=5,B3E=,观察图象可知为三次一个循环,一个循环点M的运动路径为:,则翻滚10次后AB中点M经过的路径长为:.故答案为:(4+).【点睛】本题考查规律题,解题的关键是灵活运用弧长公式、等边三角形的性质等知识解决问题.16、1【解析】根

17、据比例尺图上距离:实际距离根据比例尺关系即可直接得出实际的距离【详解】根据比例尺图上距离:实际距离,得:A,B两地的实际距离为2.61000000100000(cm)1(千米)故答案为1【点睛】本题考查了线段的比能够根据比例尺正确进行计算,注意单位的转换17、1【分析】根据函数图象中的数据可以求得时,对应的函数解析式,从而可以求得时对应的函数值,由的的图象可以求得时对应的函数值,从而可以计算出题目中所求问题的答案,本题得以解决【详解】设当时,对应的函数解析式为,得,即当时,对应的函数解析式为,当时,由图象可知,去年的水价是(元/),故小雨家去年用水量为150,需要缴费:(元),(元),即小雨家

18、去年用水量为150,若今年用水量与去年相同,水费将比去年多1元,故答案为:1【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答18、=【分析】根据表格的x、y的值找出函数的对称轴,即可得出答案【详解】解:由表格知:图象对称轴为:直线x,m,n分别为点(1,m)和(2,n)的纵坐标,两点关于直线x对称,m=n,故答案为:=【点睛】本题考查了二次函数图象上点的坐标特征,能根据表中点的坐标特点找出对称轴是解此题的关键三、解答题(共66分)19、不等式组的解集为1x2,不等式组的整数解为0、1【分析】先分别求出两个一元一次不等式的解,再根据求不等式组解的方

19、法求出不等式组的解,继而可求出其整数解.【详解】解:解不等式x+10,得:x1,解不等式x+43x,得:x2,则不等式组的解集为1x2,所以不等式组的整数解为0、1【点睛】本题考查的知识点是解不等式组,正确求出每个一元一次不等式的解是求不等式组的解的关键.20、(1)1;(2)B(,0);(3)D的坐标是(,1)或(,1)或(,1)【分析】(1)把点A的坐标代入函数解析式,利用方程来求m的值;(2)令y0,则通过解方程来求点B的横坐标;(3)利用三角形的面积公式进行解答【详解】解:(1)把A(1,0)代入y2x2+x+m,得212+1+m0,解得 m1;(2)由(1)知,抛物线的解析式为y2x

20、2+x+1令y0,则2x2+x+10,故x,解得 x1,x21故该抛物线与x轴的交点是(,0)和(1,0)点为A(1,0),另一个交点为B是(,0);(3)抛物线解析式为y2x2+x+1,C(0,1),OC1SABDSABC,点D与点C的纵坐标的绝对值相等,当y1时,2x2+x+11,即x(2x+1)0解得 x0或x即(0,1)(与点C重合,舍去)和D(,1)符合题意当y1时,2x2+x+11,即2x2x20解得x即点(,1)和(,1)符合题意综上所述,满足条件的点D的坐标是(,1)或(,1)或(,1)【点睛】本题考查了抛物线的图象和性质,解答(3)题时,注意满足条件的点D还可以在x轴的下方是

21、解题关键21、(1)车流速度68千米/小时;(2)应把大桥上的车流密度控制在20千米/小时到70千米/小时之间;(3)车流量y取得最大值是每小时4840辆【分析】(1)设车流速度与车流密度的函数关系式为v=kx+b,列式求出函数解析式,将x=50代入即可得到答案;(2)根据题意列不等式组即可得到答案;(3)分两种情况:、时分别求出y的最大值即可.【详解】(1)设车流速度与车流密度的函数关系式为v=kx+b,由题意,得,解得,当时,车流速度是车流密度的一次函数为,当x=50时,(千米/小时),大桥上车流密度为50/辆千米时的车流速度68千米/小时;(2)由题意得,解得20 x0,y随x的增大而增

22、大,当x=20时,y有最大值1600,当时,y,当x=110时,y有最大值4840,48401600,当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.【点睛】此题考查待定系数法求一次函数的解析式,一元一次不等式组的实际应用,二次函数最大值的确定,正确掌握各知识点并熟练解题是关键.22、(1)点A的坐标为(1,0)时,AB=AC=1,点C的坐标为(1,1)或(1,1);(2)见解析;(3)S=x,其中1x1.【分析】(1)A点坐标为(1,0),根据AB=AC,分两种情形求出C点坐标;(2)根据题意过点O作OMBC于点M,求出OM的长,与半径比较得出位置关系;(3)过点A作AEO

23、B于点E,在RtOAE中求AE的长,然后再在RtBAE中求出AB的长,进而求出面积的表达式;【详解】(1)点A的坐标为(1,0)时,点C的坐标为或;(2)如图1中,结论:直线BC与O相切理由如下:过点O作OMBC于点M,OBM=BOM=45,OM=OBsin45=1直线BC与O相切;(3)过点A作AEOB于点E在RtOAE中,AE2=OA2OE2=1x2,在RtBAE中,AB2=AE2+BE2, 其中1x1.【点睛】属于圆的综合题,考查直线和圆的位置关系,勾股定理,三角形的面积公式等,注意数形结合思想在解题中的应用.23、(1)(2)当为10时,超市每天销售这种玩具可获利润2250元(3)当为

24、20时最大,最大值是2400元【分析】(1)根据题意列函数关系式即可;(2)根据题意列方程即可得到结论;(3)根据题意得到,根据二次函数的性质得到当时,随的增大而增大,于是得到结论【详解】(1)根据题意得,;(2)根据题意得,解得:,每件利润不能超过60元,答:当为10时,超市每天销售这种玩具可获利润2250元;(3)根据题意得,当时,随的增大而增大,当时,答:当为20时最大,最大值是2400元【点睛】本题考查了一次函数、二次函数的应用,弄清题目中包含的数量关系是解题关键24、(1)见解析;(2)DB=5.【分析】(1)根据两角相等的两个三角形相似即可证得结论;(2)根据相似三角形的对应边成比例即可求得AB的长,进而可得结果.【详解】解:(1)BACD,AA,ABCACD;(2)ABCACD,即,解得AB=9,DB=ABAD=5.【点睛】本题考查了相似三角形的判定和性质,属于基础题型,熟练掌握相似三角形的判定和性质是解题关键.25、(1)证明见解析;(2)证明见解析;(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论