付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第2课时离散型随机变量的方差的综合问题第七章7.3.2离散型随机变量的方差1.掌握离散型随机变量的方差的性质.2.会用离散型随机变量的均值和方差解决一些实际应用问题.学习目标随堂演练课时对点练内容索引一、方差的性质二、方差的实际应用三、决策问题一、方差的性质例1已知X的分布列如表所示:(1)求X2的分布列;所以X2的分布列为(2)计算X的方差;(3)若Y4X3,求Y的均值和方差.解因为Y4X3,所以E(Y)4E(X)32,D(Y)42D(X)11.反思感悟求随机变量YaXb方差的方法求随机变量YaXb的方差,一种方法是先求Y的分布列,再求其均值,最后求方差;另一种方法是应用公式D(aXb)a2
2、D(X)求解.跟踪训练1设随机变量X的分布列为若Y2X2,则D(Y)等于解析由题意知,二、方差的实际应用例2A,B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析,X1和X2的分布列分别为X15%10%P0.80.2X22%8%12%P0.20.50.3(1)在A,B两个投资项目上各投资100万元,Y1和Y2分别表示投资项目A和B所得的利润,求方差D(Y1),D(Y2);解根据题意,知Y1和Y2的分布列分别为则E(Y1)50.8100.26,D(Y1)(56)20.8(106)20.24,E(Y2)20.280.5120.38,D(Y2)(28)20.2(88)20.5(128)20
3、.312.Y1510P0.80.2Y22812P0.20.50.3(2)将x(0 x100)万元投资项目A,(100 x)万元投资项目B,f(x)表示投资项目A所得利润的方差与投资项目B所得利润的方差的和.求f(x)的最小值,并指出x为何值时,f(x)取得最小值.当x75时,f(x)取得最小值3.反思感悟随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要理论依据.一般先比较均值,若均值相同,再用方差来决定.跟踪训练2甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等,而两个保护
4、区内每个季度发生违反保护条例的事件次数的分布列分别为甲保护区:0123P0.30.30.20.2012P0.10.50.4乙保护区:试评定两个保护区的管理水平.解甲保护区的违规次数的均值和方差分别为E()00.310.320.230.21.3,D()(01.3)20.3(11.3)20.3(21.3)20.2(31.3)20.21.21.乙保护区的违规次数的均值和方差分别为E()00.110.520.41.3,D()(01.3)20.1(11.3)20.5(21.3)20.40.41.因为E()E(),D()D(),所以两个保护区内每个季度发生的违规事件的平均次数相同,但甲保护区的违规事件次数
5、相对分散和波动,乙保护区内的违规事件次数更集中和稳定.三、决策问题例3某保险公司对一个拥有20 000人的企业推出一款意外险产品,每年每位职工只要交少量保费,发生意外后可一次性获得若干赔偿金,保险公司把企业的所有岗位共分为A,B,C三类工种,从事这三类工种的人数分别为12 000,6 000,2 000,由历史数据统计出三类工种的赔付频率如表(并以此估计赔付概率):已知A,B,C三类工种的职工每人每年保费分别为25元、25元、40元,出险后的赔偿金额分别为100万元、100万元、50万元,保险公司在开展此项业务过程中的固定支出为每年10万元.(1)求保险公司在该业务所获利润的均值;解设工种A,
6、B,C职工的每份保单保险公司的收益为随机变量X,Y,Z,则X,Y,Z的分布列分别为保险公司所获利润的均值为12 000156 00052 00010100 00090 000,所以保险公司在该业务所获利润的均值为9万元.(2)现有如下两个方案供企业选择:方案1:企业不与保险公司合作,职工不交保险,出意外企业自行拿出与保险公司提供的等额赔偿金赔偿付给意外职工,企业开展这项工作的固定支出为每年12万元;方案2:企业与保险公司合作,企业负责职工保费的70%,职工个人负责保费的30%,出险后赔偿金由保险公司赔付,企业无额外专项开支.请根据企业成本差异给出选择合适方案的建议.解方案1:企业不与保险公司合
7、作,则企业每年安全支出与固定开支共为方案2:企业与保险公司合作,则企业支出保险金额为(12 000256 000252 00040)0.737.1104.因为4610437.1104,所以建议企业选择方案2.反思感悟均值、方差在决策中的作用(1)均值:均值反映了离散型随机变量取值的平均水平,均值越大,平均水平越高.(2)方差:方差反映了离散型随机变量取值的离散波动程度,方差越大越不稳定.(3)在决策中常结合实际情形依据均值、方差做出决断.跟踪训练3某投资公司对以下两个项目进行前期市场调研.项目A:通信设备.根据调研,投资到该项目上,所有可能结果为获利40%、亏损20%、不赔不赚,且这三种情况发
8、生的概率分别为 a.项目B:新能源汽车.根据调研,投资到该项目上,所有可能结果为获利30%、亏损10%,且这两种情况发生的概率分别为b,c.经测算,当投入A,B两个项目的资金相等时,它们所获得的平均收益(即均值)也相等.(1)求a,b,c的值;设投到项目A,B的资金都为x万元,变量X1和X2分别表示投资项目A和B所获得的利润,则X1和X2的分布列分别为X20.3x0.1xPbcE(X2)0.3bx0.1cx,因为E(X1)E(X2),所以0.3bx0.1cx0.2x,即0.3b0.1c0.2.又bc1,(2)若将100万元全部投到其中一个项目,请你从投资回报稳定性的角度考虑,为投资公司选择一个
9、合理的项目,并说明理由.解选择项目B.理由如下:当投入100万元资金时,由(1)知x100,所以E(X1)E(X2)20,因为E(X1)E(X2),D(X1)D(X2),说明虽然项目A和项目B的平均收益相等,但项目B更稳妥,所以从风险回报稳定性的角度考虑,建议该投资公司选择项目B.1.知识清单:(1)方差的性质.(2)方差的实际应用.2.方法归纳:转化化归.3.常见误区:公式计算错误.课堂小结随堂演练1.已知随机变量X满足D(X)2,则D(3X2)等于A.6 B.8 C.18 D.201234解析D(X)2,D(3X2)9D(X)18.2.已知随机变量满足P(1)0.3,P(2)0.7,则E(
10、)和D()的值分别为A.0.6和0.7 B.1.7和0.09C.0.3和0.7 D.1.7和0.211234解析E()10.320.71.7,D()(11.7)20.3(21.7)20.70.21.则当p在(0,1)内增大时,A.D()减小 B.D()增大C.D()先减小后增大 D.D()先增大后减小12343.设0p1,随机变量的分布列为1234解析由分布列可知所以D()是关于p的二次函数,其图象开口向下,12344.随机变量的分布列为101Pabc1234课时对点练1.(多选)对于离散型随机变量X,有关它的均值E(X)和方差D(X),下列说法正确的是A.E(X)是反映随机变量的平均取值B.
11、D(X)越小,说明X越集中于E(X)C.E(aXb)aE(X)bD.D(aXb)a2D(X)b基础巩固12345678910111213141516解析离散型随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量取值偏离于均值的平均程度,方差越小,说明随机变量的取值越集中于均值,即A,B正确;由均值和方差的性质可得,E(aXb)aE(X)b,D(aXb)a2D(X),即C正确,D错.123456789101112131415162.若随机变量X服从两点分布,且成功的概率p0.5,则E(X)和D(X)分别为A.0.5和0.25 B.0.5和0.75C.1和0.25 D.1和0.75123
12、45678910111213141516解析X服从两点分布,X的分布列为X01P0.50.5E(X)00.510.50.5,D(X)0.520.5(10.5)20.50.25.已知随机变量YaXb(a0)且E(Y)10,D(Y)4,则a与b的值为A.a10,b3 B.a3,b10C.a5,b6 D.a6,b53.若随机变量X的分布列为12345678910111213141516X01P0.2m解析因为0.2m1,所以m0.8,所以E(X)00.210.80.8,D(X)0.20.80.16.因为E(Y)10,D(Y)4,所以E(Y)aE(X)b0.8ab10,D(Y)a2D(X)0.16a2
13、4,由,解得a5,b6,故选C.12345678910111213141516kk1Pa1a4.已知0a1,随机变量的分布列如表所示,若E()D(),则下列结论中不可能成立的是12345678910111213141516解析由题意得E()ka(k1)(1a)k1a,D()k(k1a)2ak1(k1a)2(1a)a(1a).因为E()D(),所以k1aa(1a),所以k1a2,又0a1,所以k1a2(0,1),故k1不可能成立,而选项A,B,C均有可能成立,故选D.12345678910111213141516123456789101112131415161234567891011121314
14、1516若离散型随机变量Y满足Y2X1,则下列结果正确的有A.E(X)2 B.D(X)2.4C.D(X)2.8 D.D(Y)146.(多选)设离散型随机变量X的分布列为12345678910111213141516X01245Pq0.30.20.20.112345678910111213141516解析由离散型随机变量X的分布列的性质,得q10.30.20.20.10.2,则E(X)00.210.320.240.250.12,D(X)(02)20.2(12)20.3(22)20.2(42)20.2(52)20.12.8,Y2X1,D(Y)22D(X)4D(X)42.811.2.解析X的所有可能
15、取值为0,1,2,123456789101112131415167.两封信随机投入A,B,C三个空邮箱中,则A邮箱的信件数X的方差D(X)_.123456789101112131415168.已知随机变量X的分布列为且E(X)1.1,则D(X)_.0.4912345678910111213141516解析由随机变量分布列的性质可得解得x2,123456789101112131415169.已知的分布列为(1)求的方差;1234567891011121314151612345678910111213141516(2)设Y2E(),求D(Y).解Y2E(),D(Y)D2E()22D()43841
16、536.1234567891011121314151610.已知海关大楼顶端镶有A,B两面大钟,它们的日走时误差分别为X1,X2(单位:s),其分布列如表所示:X121012P0.050.050.80.050.05X221012P0.10.20.40.20.1根据这两面大钟日走时误差的均值与方差比较这两面大钟的质量.12345678910111213141516解由题意得,E(X1)0,E(X2)0,E(X1)E(X2).D(X1)(20)20.05(10)20.05(00)20.8(10)20.05(20)20.050.5,D(X2)(20)20.1(10)20.2(00)20.4(10)2
17、0.2(20)20.11.2.D(X1)D(X2).综上可知,A大钟的质量较好.综合运用1234567891011121314151611.已知随机变量X满足E(1X)5,D(1X)5,则下列说法正确的是A.E(X)5,D(X)5B.E(X)4,D(X)4C.E(X)5,D(X)5D.E(X)4,D(X)512345678910111213141516解析随机变量X满足E(1X)5,D(1X)5,所以E(1X)1E(X)5,12D(X)5,解得E(X)4,D(X)5,故选D.123456789101112131415161234567891011121314151612345678910111
18、21314151613.(多选)袋内有大小完全相同的2个黑球和3个白球,从中不放回地每次任取1个小球,直至取到白球后停止取球,则12345678910111213141516解析设取球次数为,则的可能取值为1,2,3,123456789101112131415161234567891011121314151612345678910111213141516拓广探究12345678910111213141516A.E(211)E(221),D(211)D(221)B.E(211)D(221)C.E(211)E(221),D(211)E(221),D(211)D(221)12345678910111213141516解析由均值与方差的性质,可知E(ab)aE()b,D(ab)a2D(),则E(2i1)2E(i)1,D(2i1)4D(i).12345678910111213141516所以E(1)E(2),D(1)D(2),所以E(211)E(221),D(211)D(221),故选D.1234567891011121314151616.为了解与掌握一些基本的地震安全防护知识,某小学在9月份开学初对全校学生进行了为期一周的知识讲座,事后并进行了测试(满分100分),根据测试成绩评定为“合格”(60分以上包含60分)、“不合格”两个等级,同时对相应等级进行量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 聊天主播合同范本
- 职工灶安全协议书
- 联合培训合同范本
- 联盟与工会协议书
- 联通宽带合同范本
- 聘用试用合同范本
- 自愿购买书协议书
- 金融转让协议书
- 个人装卸协议书
- 2025年黑龙江省公需课学习-绿色信贷政策与实施案例150
- 洗胃并发症的预防与处理
- 期末语法(专项训练)-2024-2025学年人教PEP版英语六年级上册
- 算力产业园项目计划书
- 【MOOC】《电子技术》(北京科技大学)中国大学MOOC慕课答案
- 老年髋部骨折快速康复治疗
- 【初中地理】跨学科主题学习探 索外来食料作物的传播史课件-2024-2025学年七年级上学期(人教版2024)
- 四川省南充市2024-2025学年高一地理上学期期末考试试题含解析
- 小数乘除法竖式计算题200道及答案
- 过敏性休克课件
- 《红楼梦》逐章(回)详细解读
- 化学品管理控制程序
评论
0/150
提交评论