2010届高三数学高考复习必备:函数的性质、函数与方程 素材_第1页
2010届高三数学高考复习必备:函数的性质、函数与方程 素材_第2页
2010届高三数学高考复习必备:函数的性质、函数与方程 素材_第3页
2010届高三数学高考复习必备:函数的性质、函数与方程 素材_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、PAGE 用心 爱心 专心高考资源网()来源:高考资源网函数与方程知识清单:1函数的最值的定义:函数y=f(y),定义域为A,若存在y0A,使得对任意的yA,恒有成立,则称为函数的最小(大)值。2.求函数最值的方法(求最值与求值域一般相同,最值问题更具综合性和灵活性)(1)配方法:用于二次函数,或可通过换元法转化为二次函数的最值问题;(2)判别式法:运用方程思想,依据二次方程有根,求出y的最值,但必须检验这个最值在定义域内有相应的x的值;(3)不等式法:利用平均不等式求最值,注意一正二定三等;(4)换元法:通过变量代换,化繁为简,化难为易,化未知为已知,其中三角代换是重要方法。换元后须注意新变

2、量的取值范围;(5)数形结合法(图象法):当一个函数图象可作时,通过图象可求其最值;(6)单调性法:利用函数的单调性求最值;(7)求导法:当一个函数在定义域上可导时,可据其导数求最值.3解应用题的一般程序(1)审题:阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是基础.(2)建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型,正确进行建“模”是关键的一关。(3)求解:求解数学模型,得到数学结论,要充分注重数学模型中元素的实际意义,更要注意巧思妙作,优化过程。(4)作答:将数学结论还原给实际问题的过程。4常见函数模型(1)二次函数型。(2) “对钩函数”型(3) 分段

3、函数模型。(4) y=N(1+p)y型及数列型基本函数1.一元一次函数:,当时,是增函数;当时,是减函数;2.一元二次函数:一般式:;对称轴方程是;顶点为;两点式:;对称轴方程是 ;与轴的交点为 ;顶点式:;对称轴方程是 ;顶点为 ;一元二次函数的单调性: 当时: 为增函数; 为减函数;当时: 为增函数; 为减函数;二次函数求最值问题:首先要采用配方法,化为的形式,()、若顶点的横坐标在给定的区间上,则当时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得;当时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得;()若顶点的横坐标不在给定的区间上,则当时:最小值在距离对称轴较近的端

4、点处取得,最大值在距离对称轴较远的端点处取得;当时:最大值在距离对称轴较近的端点处取得,最小值在距离对称轴较远的端点处取得; 二次方程实数根的分布问题: 设实系数一元二次方程的两根为;则:根的情况等价命题在区间上有两根在区间上有两根在区间或上有一根充要条件af(k)0另外:二次方程f(x)=0的一根小于p,另一根大于q(pq)二次方程f(x)=0在区间(p,q)内只有一根f(p)f(q)0,或(检验)或(检验)。若在闭区间讨论方程有实数解的情况,可先利用在开区间上实根分布的情况,得出结果,在令和检查端点的情况。注:常见的初等函数一次函数,二次函数,反比例函数,指数函数,对数函数。特别指出,分段函数也是重要的函数模型。3.指数函数:(),定义域R,值域为().当,指数函数:在定义域上为增函数;当,指数函数:在定义域上为减函数.当时,的值越大,越靠近轴;当时,则相反.4.对数函数:如果()的次幂等于,就是,数就叫做以为底的的对数,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论