版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 /247第一章气体一基本要求1了解低压下气体的几个经验定律;2掌握理想气体的微观模型,能熟练使用理想气体的状态方程;掌握理想气体混合物组成的几种表示方法,注意Dalton分压定律和Amagat分体积定律的使用前提;了解真实气体p-V图的一般形状,了解临界状态的特点及超临界流体的m应用;了解vanderWaals气体方程中两个修正项的意义,并能作简单计算。把握学习要点的建议本章是为今后用到气体时作铺垫的,几个经验定律在先行课中已有介绍,这里仅是复习一下而已。重要的是要理解理想气体的微观模型,掌握理想气体的状态方程。因为了解了理想气体的微观模型,就可以知道在什么情况下,可以把实际气体作为理想气体
2、处理而不致带来太大的误差。通过例题和习题,能熟练地使用理想气体的状态方程,掌握p,V,T和物质的量n几个物理量之间的运算。物理量的运算既要进行数字运算,也要进行单位运算,一开始就要规范解题方法,为今后能准确、规范地解物理化学习题打下基础。掌握Dalton分压定律和Amagat分体积定律的使用前提,以免今后在不符合这种前提下使用而导致计算错误。在教师使用与“物理化学核心教程”配套的多媒体讲课软件讲课时,要认真听讲,注意在PowerPoint动画中真实气体的p-V图,掌握实际气体在什么条m件下才能液化,临界点是什么含义等,为以后学习相平衡打下基础。思考题参考答案如何使一个尚未破裂而被打瘪的乒乓球恢
3、复原状?采用了什么原理?答:将打瘪的乒乓球浸泡在热水中,使球的壁变软,球中空气受热膨胀,可使其恢复球状。采用的是气体热胀冷缩的原理。在两个密封、绝热、体积相等的容器中,装有压力相等的某种理想气体。试问,这两容器中气体的温度是否相等?答:不一定相等。根据理想气体状态方程,若物质的量相同,则温度才会相3两个容积相同的玻璃球内充满氮气,两球中间用一根玻管相通,管中间有一汞滴将两边的气体分开。当左边球的温度为273K,右边球的温度为293K时,汞滴处在中间达成平衡。试问:若将左边球的温度升高10K,中间汞滴向哪边移动?若将两个球的温度同时都升高10K,中间汞滴向哪边移动?答:(1)左边球的温度升高,气
4、体体积膨胀,推动汞滴向右边移动。(2)两个球的温度同时都升高10K,汞滴仍向右边移动。因为左边球的起始温度低,升高10K所占的比例比右边的大,283/273大于303/293,所以膨胀的体积(或保持体积不变时增加的压力)左边的比右边的大。4在大气压力下,将沸腾的开水迅速倒入保温瓶中,达保温瓶容积的0.7左右,迅速盖上软木塞,防止保温瓶漏气,并迅速放开手。请估计会发生什么现象?答:软木塞会崩出。这是因为保温瓶中的剩余气体被热水加热后膨胀,当与迅速蒸发的水汽的压力加在一起,大于外面压力时,就会使软木塞崩出。如果软木塞盖得太紧,甚至会使保温瓶爆炸。防止的方法是,在灌开水时不要灌得太快,且要将保温瓶灌
5、满。5当某个纯的物质的气、液两相处于平衡时,不断升高平衡温度,这时处于平衡状态的气-液两相的摩尔体积将如何变化?答:升高平衡温度,纯物质的饱和蒸汽压也升高。但由于液体的可压缩性较小,热膨胀仍占主要地位,所以液体的摩尔体积会随着温度的升高而升高。而蒸汽易被压缩,当饱和蒸汽压变大时,气体的摩尔体积会变小。随着平衡温度的不断升高,气体与液体的摩尔体积逐渐接近。当气体的摩尔体积与液体的摩尔体积相等时,这时的温度就是临界温度。6Dalton分压定律的适用条件是什么?Amagat分体积定律的使用前提是什么?答:这两个定律原则上只适用于理想气体。Dalton分压定律要在混合气体的温度和体积不变的前提下,某个
6、组分的分压等于在该温度和体积下单独存在时的压力。Amagat分体积定律要在混合气体的温度和总压不变的前提下,某个组分的分体积等于在该温度和压力下单独存在时所占有的体积。7有一种气体的状态方程为pV=RT+bp(b为大于零的常数),试分析m这种气体与理想气体有何不同?将这种气体进行真空膨胀,气体的温度会不会下降?答:将气体的状态方程改写为p(V-b)=RT,与理想气体的状态方程相比,m这个状态方程只校正了体积项,未校正压力项。说明这种气体分子自身的体积不能忽略,而分子之间的相互作用力仍可以忽略不计。所以,将这种气体进行真空膨胀时,气体的温度不会下降,这一点与理想气体相同。8如何定义气体的临界温度
7、和临界压力?答:在真实气体的p-V图上,当气-液两相共存的线段缩成一个点时,称这m点为临界点。这时的温度为临界温度,这时的压力为临界压力。在临界温度以上,无论加多大压力都不能使气体液化。9.vanderWaals气体的内压力与体积成反比,这样说是否正确?答:不正确。根据vanderWaals气体的方程式,p+(V-b)=RT,其IV2丿mm中_被称为是内压力,而a是常数,所以内压力应该与气体体积的平方成反比。V2m10.当各种物质都处于临界点时,它们有哪些共同特性?答:在临界点时,物质的气-液界面消失,液体和气体的摩尔体积相等,成为一种既不同于液相、又不同于气相的特殊流体,称为超流体。高于临界
8、点温度时,无论用多大压力都无法使气体液化,这时的气体就是超临界流体。概念题参考答案在温度、容积恒定的容器中,含有A和B两种理想气体,这时A的分压和分体积分别是p和V。若在容器中再加入一定量的理想气体C,问p和V的AAAA变化为()(A)p和V都变大(B)p和V都变小AAAA(C)p不变,V变小(D)p变小,V不变AAAA答:(C)。这种情况符合Dalton分压定律,而不符合Amagat分体积定律。在温度T、容积V都恒定的容器中,含有A和B两种理想气体,它们的物质的量、分压和分体积分别为n,p,V和n,p,V,容器中的总压为p。试AAABBB判断下列公式中哪个是正确的?(A)pV=nRTAApV
9、=(n+n)RT(D)pV=nRTBBBBABpV=nRTAAA答:(A)。题目所给的等温、等容的条件是Dalton分压定律的适用条件,所以只有(A)的计算式是正确的。其余的n,p,V,T之间的关系不匹配。3.已知氢气的临界温度和临界压力分别为T=33.3K,p=1.297x106Pa。CC有一氢气钢瓶,在298K时瓶内压力为98.0 x106Pa,这时氢气的状态为)(B)气态(A)液态(C)气-液两相平衡(D)无法确定答:(B)。仍处在气态。因为温度和压力都高于临界值,所以是处在超临界区域,这时仍为气相,或称为超临界流体。在这样高的温度下,无论加多大压力,都不能使氢气液化。4.在一个绝热的真
10、空容器中,灌满373K和压力为101.325kPa的纯水,不留一点空隙,这时水的饱和蒸汽压(A)等于零大于101.325kPa小于101.325kPa等于101.325kPa答:(D)。饱和蒸气压是物质的本性,与是否留有空间无关,只要温度定了,其饱和蒸气压就有定值,查化学数据表就能得到,与水所处的环境没有关系。5真实气体在如下哪个条件下,可以近似作为理想气体处理?(A)高温、高压B)低温、低压(C)高温、低压D)低温、高压答:(C)。这时分子之间的距离很大,体积很大,分子间的作用力和分子自身所占的体积都可以忽略不计。6.在298K时,地面上有一个直径为1m的充了空气的球,其中压力为100kPa
11、。将球带至高空,温度降为253K,球的直径胀大到3m,此时球内的压力为B)9.43kPaA)33.3kPaC)3.14kPaD)28.3kPa答:(C)。升高过程中,球内气体的物质的量没有改变,利用理想气体的状态方程,可以计算在高空中球内的压力。pVpVn=1_1=2RTRT100k秋a25$K)3X一112二3.14kPapVTp二_12=VT298K217使真实气体液化的必要条件是(A)压力大于pcB)温度低于TC(C)体积等于VD)同时升高温度和压力答:(B)。T是能使气体液化的最高温度,C力都无法使气体液化。若高于临界温度,无论加多大压8在一个恒温、容积为2dm3的真空容器中,依次充入
12、温度相同、始态为100kPa,2dm3的N(g)和200kPa,1dm3的A(g),设两者形成理想气体混2r合物,则容器中的总压力为A)100kPaB)150kPaC)200kPaD)300kPa答:(C)。等温条件下,200kPa,1dm3气体等于100kPa,2dm3气体,总压为p二p+p=100kPa+100kPa=200kPa。AB9.在298K时,往容积都等于2dm3并预先抽空的容器A、B中,分别灌入100g和200g水,当达到平衡时,两容器中的压力分别为p和p,两者的关系AB为(A)ppAB(C)p=pAB答:(C)。饱和蒸气压是物质的特性,只与温度有关。在这样的容器中,水(D)无
13、法确定不可能全部蒸发为气体,在气-液两相共存时,只要温度相同,它们的饱和蒸气压也应该相等。10.在273K,101.325kPa时,CC1的蒸气可以近似看作为理想气体。已4知CC1/1)的摩尔质量为154gmol-1的,则在该条件下,CC1/1)气体的密度为()(A)6.87g-dm-3(B)4.52g-dm-3(C)6.42g-dm-33.44g-dm-3答:(A)。通常将273K,101.325kPa称为标准状态,在该状态下,1mol任意物质的气体的体积等于22.4dm3。根据密度的定义,154g22.4dm3=6.87g-dm-311在某体积恒定的容器中,装有一定量温度为300K的气体,
14、现在保持压力不变,要将气体赶出1/6,需要将容器加热到的温度为()(A)350K(B)250K(C)300K(D)360K答:(D)。保持V,p不变,n=n,T=T=360K26125112.实际气体的压力(p)和体积(V)与理想相比,分别会发生的偏差为()(A)p,V都发生正偏差(B)p,V都发生负偏差(C)p正偏差,V负偏差(D)p负偏差,V正偏差答:(B)。由于实际气体的分子间有相互作用力,所以实际的压力要比理想气体的小。由于实际气体分子自身的体积不能忽略,所以能运用的体积比理想气体的小。习题解析1.在两个容积均为V的烧瓶中装有氮气,烧瓶之间有细管相通,细管的体积可以忽略不计。若将两烧瓶
15、均浸入373K的开水中,测得气体压力为60kPa。若一只烧瓶浸在273K的冰水中,另外一只仍然浸在373K的开水中,达到平衡后,求这时气体的压力。设气体可以视为理想气体。解:因为两个容器是相通的,所以压力相同。设在开始时的温度和压力分别为T,p,后来的压力为p,273K为T。系统中氮气的物质的量保持不变,1122n=n+n。根据理想气体的状态方程,有12p2VpVpV+=+2-RTRTRT112化简得:乂=pT21Tp=2px22尸1T+T21273=2x60kPax=50.7kPa273+3732.将温度为300K,压力为1800kPa的钢瓶中的氮气,放一部分到体积为20dm3的贮气瓶中,使
16、贮气瓶压力在300K时为100kPa,这时原来钢瓶中的压力降为1600kPa(假设温度未变)。试求原钢瓶的体积。仍假设气体可作为理想气体处理。解:设钢瓶的体积为V,原有的气体的物质的量为n,剩余气体的物质的1量为n,2放入贮气瓶中的气体物质的量为n。根据理想气体的状态方程,pV=nRTpV二nRT22n=n-n=空-空=匕(p-p)12RTRTRT12pV100kPax20 x10-3m3n=j3=0.80molRT8.314J-mol-1-K-1x300KV=*p1-p20-80m01X8-314J-m01-1-K-1X300J9.98dm3(1800-1600)kPa3用电解水的方法制备氢
17、气时,氢气总是被水蒸气饱和,现在用降温的方法去除部分水蒸气。现将在298K条件下制得的饱和了水气的氢气通入283K、压力恒定为128.5kPa的冷凝器中,试计算:在冷凝前后,混合气体中水气的摩尔分数。已知在298K和283K时,水的饱和蒸气压分别为3.167kPa和1.227kPa。混合气体近似作为理想气体。解:水气所占的摩尔分数近似等于水气压力与冷凝操作的总压之比在冷凝器进口处,T=298K,混合气体中水气的摩尔分数为为0.31。在420K和一定压力下,混合气体的体积为9.95dm3。求混合气体的总压力和各组分的分压。假定混合气体遵守Dalton分压定律。已知氮气和甲烷的摩尔质量分别为28g
18、mol-i和16g-mol-i。x1(H2O,g)=p(H0)12p3.167kPa128.5kPa=0.025在冷凝器出口处,T=283K,混合气体中水气的摩尔分数为x(HO,g)=P2(H2O)=1.227=0.009522p128.5kPa可见这样处理以后,氢气中的含水量下降了很多。4.某气柜内贮存氯乙烯CH2=CHCl(g)300m3,压力为122kPa,温度为300K。求气柜内氯乙烯气体的密度和质量。若提用其中的100m3,相当于氯乙烯的物质的量为多少?已知其摩尔质量为62.5g-mol-i,设气体为理想气体。解:根据已知条件,气柜内贮存氯乙烯的物质的量为n二匹,则氯乙烯的RT质量为
19、m二nM。根据密度的定义p二m。将以上的关系式代入,消去相同项,V得MpRT62.5xlO-3kg-mol-ix122x103Pa8.314J-mol-i-K-1x300K二3.06kg-m-3二3.06g-dm-3m二pV二3.06kg-m-3x300m3二918kg提用其中的100m3,相当于提用总的物质的量的丄,则提用的物质的量为31n二一n3总1918kgx362.5xlO-3kgmol-1=4896mol11pVn二n二3总3RT1122x103Pax300m3x38.314Jmol-iK-1x300K=4891mol5有氮气和甲烷(均为气体)的气体混合物100g,已知含氮气的质量分
20、数解:混合气体中,含氮气和甲烷气的物质的量分别为nN2=1.11molm_0.31x100gM28g-mol-inCH4(1-0.31)x100g16g-mol-1=4.31mol混合气体的总压力为nRT(1.11+4.31)molx8.314J-mol-1-K-1x420K9.95x10-3m3=1902kPa混合气体中,氮气和甲烷气的分压分别为nTOC o 1-5 h zp=xp=Nxpn2n2总n+n总N2CH4二111x1902kPa二389.5kPa1.11+4.31p=(1902-389.5)kPa=1512.5kPaCH46.在300K时,某一容器中含有H(g)和N(g)两种气体
21、的混合物,压力为22152kPa。将N(g)分离后,只留下H(g),保持温度不变,压力降为50.7kPa,22气体质量减少了14g。已知N(g)和H(g)的摩尔质量分别为28g-mol-1和222.0gmol-1。试计算:(1)容器的体积容器中H(g)的质量2容器中最初的气体混合物中,H(g)和N(g)的摩尔分数22解:(1)这是一个等温、等容的过程,可以使用Dalton分压定律,利用N2(g)分离后,容器中压力和质量的下降,计算N(g)的物质的量,借此来计算容器2的体积。p=ppN2H2二(152-50.7)=kPa101m(N)n二aN2MN2=0.5mol28gmolnRTV=亠pN20
22、.5molx8.314J-mol-1-K-1x300K.=12.3dm3101.3kPa(2)p=101.3kPap=50.7kPaN2H2在T,V不变的情况下,根据Dalton分压定律,有n-Hr50.7kPa0.5101.3kPan=0.5n=0.5x0.5mol=0.25molH2N2m(H)=nM=0.25molx2.0g-mol-1=0.5g2H2H23)xNnn2=0.67n+n(0.5+0.25)molH2N20.5molx=1-0.67=0.33H27设在一个水煤气的样品中,各组分的质量分数分别为:w(H)=0.064,2w(CO)=0.678,w(N)=0.107,w(CO)
23、=0.140,w(CH)=0.011。试计算:224混合气中各气体的摩尔分数当混合气在670K和152kPa时的密度各气体在上述条件下的分压解:设水煤气的总质量为100g,则各物质的质量分数乘以总质量即为各物质的质量,所以,在水煤气样品中各物的物质的量分别为(各物质的摩尔质量自己查阅):6.4gn(H2)=需=2.0gmol-1=3.20mol22M(H)2同理有:n(Co)=册mo:?=242moln(N)=0.38mol228g-mol-1n(CO=i0g=0.32mol244gmol1.1gn(CH)=0.07mol416g-mol-1二(3.20+2.42+0.38+0.32+0.07
24、)mol二6.39molx(CO)=2.42mo】=0.379n6.39mol总同理有:x(H)二0.500,x(N)二0.059,x(CO)二0.050,x(CH)二0.0112224(2)因为pV二n严nRTV=-p=型moix&314JmobK-1x670K=234.2畑152kPam100gp=万*rE427g-dm(3)根据Dalton分压定律p二px,所以BBp(H)二x(H)p二0.5x152kPa二76.0kPa22同理p(CO扌57.6,kp(N)二8.97kPa,p(CO)二7.60kPa22p(CH)二1.67kPa48.在288K时,容积为20dm3的氧气钢瓶上压力表的
25、读数为10.13MPa,氧气被使用一段时间以后,压力表的读数降为2.55MPa,试计算使用掉的氧气的质量。设近似可以使用理想气体的状态方程。已知M(O)二32g-mol-i。2解:在氧气被使用前,钢瓶中含氧气的质量m为1pVm=nM-txM1RT10.13x106Pax20 x10-3m3,-x32g-mol-1-2.71kg8.314J-mol-1-K-1x288K氧气被使用后,钢瓶中剩余氧气的质量m为2pVm2xM2RT-2.55x106pax20 x1-3m32g.mol-1-0.68kg8.314J.mol-1.K-1x288K则使用掉的氧气的质量为m-m-m-(2.71-0.68)k
26、g-2.03kg12使用掉的氧气的质量也可以从压力下降来计算ApV“m-xMRT(10.13-2.55)x106Pax20 x10-3m3-x32g.mol-1J.mol-1.K-1x288K-2.03kg9.由氯乙烯(CHCl),氯化氢(HCl)和乙烯(CH)构成的理想气体2324混合物,各组分的摩尔分数分别为x(CHCl)-0.89,x(HCl)-0.09和23x(CH)-0.02。在恒定温度和压力为101.325kPa的条件下,用水淋洗混合气以24去除氯化氢,但是留下的水气分压为2.666kPa。试计算洗涤后的混合气中氯乙烯和乙烯的分压。解:将氯化氢去除以后,在留下的混合气中,氯乙烯和乙
27、烯所具有的压力为p-(101.3-252.666-)kPa98根据在原来混合物中,氯乙烯和乙烯所占的摩尔分数,分别来计算它们的分压即(C口Cl)vO.89p(CHCl)=px23”0.89+0.02二98.659kPa89二96.49kPa0.91p(CH)二98.659kPax002二2.17kPa240.91或p(CH扌p-p(CHCl)2423二(98.65-996.49)kPa210.在273K和40.53MPa时,测得氮气的摩尔体积为7.03x10-5m3mol-1,试用理想气体状态方程计算其摩尔体积,并说明为何实验值和计算值两个数据有差异。解:V=RTmp8.314J-mol-1-
28、K-1x273K门.=5.60 x10-5m3-mol-140.53x106Pa因为压力高,N(g)已经偏离理想气体的行为。211.有1molN(g),在273K时的体积为70.3cm3,试计算其压力(实验2测定值为40.5MPa),并说明如下两种计算结果为何有差异。(1)用理想气体状态方程用vanderWaals方程。已知vanderWaals常数a=0.1368Pa-m6-mol-2,b=0.386x10-4m3-mol-1。解:(1)nRT1molx8.314J-mol-1-K-1x273Kp=70.3x10-6m3二32.X10Pa32.3MPa2)RTpV-bmV2m8.31x427
29、30.6P8a(70.-338.6-610 x(70.2310)V二43欣10Pa43.9MPa从计算结果可知,因为压力很高,气体已偏离理想气体的行为,用vanderWaals方程计算误差更小一些。在一个容积为o.5.m3的钢瓶内,放有16kg温度为500K的CH(g),试4计算容器内的压力。用理想气体状态方程由vanderWaals方程。已知CH(g)的vanderWaals常数4a=0.228Pa-me-mol-2,b=0.427x10-4m3-mol-1,CH(g)的摩尔质量M(CH)二16.0g-mol-i。44解:(1)n(CH扌=_16kg=1000molM16.0-gmolnRT
30、000mlX空JmobK-1X500K=8.314MPa0.5m32)nRTa2nP_V-n匚飞-0.228x(1000)2-Pa000 x8.314x5000.50-1000 x0.427x10-4=8.18MPa第二章热力学第一定律一基本要求1掌握热力学的一些基本概念,如:各种系统、环境、热力学状态、系统性质、功、热、状态函数、可逆过程、过程和途径等。2能熟练运用热力学第一定律,掌握功与热的取号,会计算常见过程中的Q,W,AU和AH的值。了解为什么要定义焓,记住公式AU=Q,AH=Q的适用条件。Vp4掌握理想气体的热力学能和焓仅是温度的函数,能熟练地运用热力学第一定律计算理想气体在可逆或不
31、可逆的等温、等压和绝热等过程中,AU,AH,W,Q的计算。5.掌握等压热Q与等容热Q之间的关系,掌握使用标准摩尔生成焓和pV标准摩尔燃烧焓计算化学反应的摩尔焓变,掌握AU与AH之间的关系。rmrm6了解Hess定律的含义和应用,学会用Kirchhoff定律计算不同温度下的反应摩尔焓变。二把握学习要点的建议学好热力学第一定律是学好化学热力学的基础。热力学第一定律解决了在恒定组成的封闭系统中,能量守恒与转换的问题,所以一开始就要掌握热力学的一些基本概念。这不是一蹴而就的事,要通过听老师讲解、看例题、做选择题和做习题等反反复复地加深印象,才能建立热力学的概念,并能准确运用这些概念。例如,功和热,它们
32、都是系统与环境之间被传递的能量,要强调“传递”这个概念,还要强调是系统与环境之间发生的传递过程。功和热的计算一定要与变化的过程联系在一起。譬如,什么叫雨?雨就是从天而降的水,水在天上称为云,降到地上称为雨水,水只有在从天上降落到地面的过程中才被称为雨,也就是说,“雨”是一个与过程联系的名词。在自然界中,还可以列举出其他与过程有关的名词,如风、瀑布等。功和热都只是能量的一种形式,但是,它们一定要与传递的过程相联系。在系统与环境之间因温度不同而被传递的能量称为热,除热以外,其余在系统与环境之间被传递的能量称为功。传递过程必须发生在系统与环境之间,系统内部传递的能量既不能称为功,也不能称为热,仅仅是
33、热力学能从一种形式变为另一种形式。同样,在环境内部传递的能量,也是不能称为功(或热)的。例如在不考虑非膨胀功的前提下,在一个绝热、刚性容器中发生化学反应、燃烧甚至爆炸等剧烈变化,由于与环境之间没有热的交换,也没有功的交换,所以Q二0,W二0,AU二0。这个变化只是在系统内部,热力学能从一种形式变为另一种形式,而其总值保持不变。也可以通过教材中的例题,选定不同的对象作系统,则功和热的正、负号也会随之而不同。功和热的取号也是初学物理化学时容易搞糊涂的问题。目前热力学第一定律的数学表达式仍有两种形式,即:AU二Q+W,AU二Q-W,虽然已逐渐统一到用加号的形式,但还有一个滞后过程。为了避免可能引起的
34、混淆,最好从功和热对热力学能的贡献的角度去决定功和热的取号,即:是使热力学能增加的,还是使热力学能减少的,这样就容易掌握功和热的取号问题。焓是被定义的函数,事实上焓是不存在的,仅是几个状态函数的组合。这就要求理解为什么要定义焓?定义了焓有什么用处?在什么条件下,焓的变化值才具有一定的物理意义,即AH=Q。p务必要记住AU=Q,AH=Q这两个公式的使用限制条件。凭空要记住公式Vp的限制条件,既无必要,又可能记不住,最好从热力学第一定律的数学表达式和焓的定义式上理解。例如,根据热力学第一定律,dU=6Q+6W=6Q+6W+6W=6Q-pdV+6Wefef要使dU=6Q或AU=Q,必须使dV=0,6
35、W=0,这就是该公式的限制条件。VVf同理:根据焓的定义式,H=U+pVdH=dU+pdV+Vdp将上面dU的表达式代入,得dH=6Q-pdV+6W+pdV+Vdpef要使dH=6Q或AH=Q,必须在等压条件下,dp=0,系统与环境的压力相等,ppp=p和6W=0,这就是该公式的限制条件。以后在热力学第二定律中的一些ef公式的使用限制条件,也可以用相似的方法去理解。状态函数的概念是十分重要的,必须用实例来加深这种概念。例如:多看几个不同的循环过程来求AU和AH,得到AU=0,AH=0,这样可以加深状态函数的“周而复始,数值还原”的概念。例如H(g)和O(g)可以通过燃烧、爆鸣、22热爆炸和可逆
36、电池等多种途径生成水,只要保持始态和终态相同,则得到的AU和AH的值也都相同,这样可以加深“异途同归,值变相等”的概念。化学反应进度的概念是很重要的,必须牢牢掌握。以后只要涉及化学反应,都要用到反应进度的概念。例如,在化学反应摩尔焓变的求算中,今后在化学平衡中,利用反应的Gibbs自由能随反应进度的变化曲线来判断化学变化的方向与限度,在化学动力学中利用反应进度来定义反应的速率,以及在电化学中,利用电化学的实验数据来计算反应进度为1mol时的热力学函数的变化值等,都要用到反应进度的概念,所以必须掌握化学反应进度的概念。用标准摩尔生成焓和标准摩尔燃烧焓来计算化学反应的摩尔焓变时,相减的次序是不一样
37、的,必须要理解为什么不一样,这样在做习题时就不会搞错了。要学会查阅热力学数据表,这在今后的学习和工作中都是十分有用的。三思考题参考答案1判断下列说法是否正确,并简述判断的依据。状态给定后,状态函数就有定值;状态函数固定后,状态也就固定了。状态改变后,状态函数一定都改变。因为AU=Q,AH=Q,所以Q,Q是特定条件下的状态函数。VpVp根据热力学第一定律,因为能量不能无中生有,所以一个系统若要对外做功,必须从外界吸收热量。在等压下,用机械搅拌某绝热容器中的液体,使液体的温度上升,这时AH=Q=0op某一化学反应在烧杯中进行,热效应为Q,焓变为AH。若将化11学反应安排成反应相同的可逆电池,使化学
38、反应和电池反应的始态和终态都相同这时热效应为Q,焓变为AH,则AH=AH。2212答:(1)对。因为状态函数是状态的单值函数,状态固定后,所有的状态函数都有定值。反之,状态函数都有定值,状态也就被固定了。不对。虽然状态改变后,状态函数会改变,但不一定都改变。例如,系统发生了一个等温过程,体积、压力等状态函数发生了改变,系统的状态已与原来的不同,但是温度这个状态函数没有改变。不对。热力学能U和焓H是状态函数,而AU,AH仅是状态函数的变量。Q和Q仅在特定条件下与状态函数的变量相等,所以Q和Q不可能是状VpVp态函数。不对。系统可以降低自身的热力学能来对外做功,如系统发生绝热膨胀过程。但是,对外做
39、功后,系统自身的温度会下降。不对。因为环境对系统进行机械搅拌,做了机械功,这时W主0,所以f不符合AH=Q的使用条件。使用AH=Q这个公式,等压和W主0,这两个条ppf件一个也不能少。对。因为焓H是状态函数,只要反应的始态和终态都相同,则焓变的数值也相同,与反应具体进行的途径无关,这就是状态函数的性质,“异途同归,值变相等”但是,两个过程的热效应是不等的,即Q丰Q。122回答下列问题,并简单说明原因。可逆热机的效率最高,在其他条件都相同的前提下,用可逆热机去牵引火车,能否使火车的速度加快?Zn与盐酸发生反应,分别在敞口和密闭的容器中进行,哪一种情况放的热更多一些?在一个用导热材料制成的圆筒中,
40、装有压缩空气,圆筒中的温度与环境达成平衡。如果突然打开筒盖,使气体冲出,当压力与外界相等时,立即盖上筒盖。过一会儿,筒中气体的压力有何变化?在装有催化剂的合成氨反应室中,N(g)与H(g)的物质的量之比为1:3,22反应方程式为N2(g)+3巴仗)甘卫2NH/g)。分别在温度为化和的条件下,实验测定放出的热量对应为Q(T)和Q(T)。但是用Kirchhoff定律计算时p1p2AH(T)二AH(T)虧ACdTrm2rm1Tpr计算结果与实验值不符,试解释原因。1答:(1)可逆热机的效率虽高,但是可逆过程是一个无限缓慢的过程,每一步都接近于平衡态。所以,用可逆热机去牵引火车,在有限的时间内是看不到
41、火车移动的。所以,可逆功是无用功,可逆热机的效率仅是理论上所能达到的最高效率,使实际不可逆热机的效率尽可能向这个目标靠拢,实际使用的热机都是不可逆的。当然在密闭的容器中进行时,放的热更多一些。因为在发生反应的物质的量相同时,其化学能是一个定值。在密闭容器中进行时,化学能全部变为热能,放出的热能就多。而在敞口容器中进行时,一部分化学能用来克服大气的压力做功,余下的一部分变为热能放出,放出的热能就少。筒中气体的压力会变大。因为压缩空气冲出容器时,筒内的气体对冲出的气体做功。由于冲出的速度很快,筒内气体来不及从环境吸热,相当于是个绝热过程,所以筒内气体的温度会下降。当盖上筒盖又过了一会儿,筒内气体通
42、过导热壁,从环境吸收热量使温度上升,与环境达成平衡,这时筒内的压力会增加。用Kirchhoff公式计算的是反应进度等于1mol时的等压热效应,即摩尔反应焓变。用实验测定的是反应达平衡时的等压热效应,由于合成氨反应的平衡转化率比较低,只有25%左右,所以实验测定值会比理论计算的结果小。如果将反应物过量,使生成产物的数量与化学计量方程的相同,那实验值与计算值应该是等同的。理想气体的绝热可逆和绝热不可逆过程的功,都可用公式W二CAT计算,V那两种过程所做的功是否一样?答:当然不一样,因为从同一个始态出发,绝热可逆与绝热不可逆两个过程不可能到达同一个终态,两个终态温度不可能相同,即AT不可能相同,所以
43、做的功也不同。通常绝热可逆过程做的功(绝对值)总是大于不可逆过程做的功。指出如下所列3个公式的适用条件:(1)AH=Q(2)AU二Q(3)W二nRTln匕pVV2答:(1)式,适用于不做非膨胀功(W二0)的等压过程(dp二0)。f(2)式,适用于不做非膨胀功(W二0)的等容过程(dV=0)。f(3)式,适用于理想气体不做非膨胀功(W二0)的等温可逆过程。f用热力学的基本概念,判断下列过程中,W,Q,AU和AH的符号,是0,0温度升高,系统吸热。AU0系统从环境吸热,使系统的热力学能增加。AH0根据焓的定义式,AH=AU+A(pV)=AU+VAp0。(3)W0反应会放出氢气,要保持系统的压力不变
44、,放出的氢气推动活塞,克服外压对环境做功。Q0反应是放热反应。AU0系统既放热又对外做功,使热力学能下降。AH0因为是在绝热钢瓶中发生的放热反应,气体分子数没有变化,钢瓶内的温度会升高,导致压力也增高,根据焓的定义式,可以判断焓值是增加的。AH=AJ+(Ap莎=VApAp0H或AH=AU+(ApV)=nRATAT0AH(5)W0在凝固点温度下水结成冰,体积变大,系统克服外压,对环境做功。Q0水结成冰是放热过程。AU0系统既放热又对外做功,热力学能下降。AH0因为这是等压相变,AH=Q。p6在相同的温度和压力下,一定量氢气和氧气从四种不同的途径生成水:(1)氢气在氧气中燃烧,(2)爆鸣反应,(3
45、)氢氧热爆炸,(4)氢氧燃料电池。在所有反应过程中,保持反应方程式的始态和终态都相同,请问这四种变化途径的热力学能和焓的变化值是否相同?答:应该相同。因为热力学能和焓是状态函数,只要始、终态相同,无论经过什么途径,其变化值一定相同。这就是状态函数的性质:“异途同归,值变相等”。7一定量的水,从海洋蒸发变为云,云在高山上变为雨、雪,并凝结成冰。冰、雪熔化变成水流入江河,最后流入大海,一定量的水又回到了始态。问历经整个循环,这一定量水的热力学能和焓的变化是多少?答:水的热力学能和焓的变化值都为零。因为热力学能和焓是状态函数,不论经过怎样复杂的过程,只要是循环,系统回到了始态,热力学能和焓的值都保持
46、不变。这就是状态函数的性质:“周而复始,数值还原”。8在298K,101.3kPa压力下,一杯水蒸发为同温、同压的气是一个不可逆过程,试将它设计成可逆过程。答:通常有四种相变可以近似看作是可逆过程:(1)在饱和蒸气压下的气-液两相平衡,(2)在凝固点温度时的固-液两相平衡,(3)在沸点温度时的气-液两相平衡,(4)在饱和蒸气压下的固-气两相平衡(升华)。可以将这个在非饱和蒸气压下的不可逆蒸发,通过两种途径,设计成可逆过程:(1)绕到沸点;将298K,101.3kPa压力下的水,等压可逆升温至373K,在沸点温度下可逆变成同温、同压的蒸气,然后再等压可逆降温至298K。(2)绕到饱和蒸气压;将2
47、98K,101.3kPa压力下的水,等温可逆降压至饱和蒸气压P,在298K和饱和蒸气压下,可逆变成同温、同压的蒸气,再等温s可逆升压至101.3kPa。变化的示意图如下:0(1,373K,101.3kPa)甘鼬(,373K,101.3kPa)2t(1)2;H(1,298K,101.3kPa)H(g,298K,101.3kPa)22;tH2(1,298K,)目确柯巴,298K,Ps)究竟设计哪一种可逆途径,要根据题目的已知条件决定。四概念题参考答案1对于理想气体的热力学能,有下述四种理解:状态一定,热力学能也一定对应于某一状态的热力学能是可以直接测定的上的数值()对应于某一状态,热力学能只有一个
48、数值,不可能有两个或两个以状态改变时,热力学能一定跟着改变,其中都正确的是:(A)(1),(2)(C)(2),(4)(3),(4)(D)(1),(3)答:(D)。热力学能是状态的单值函数,其绝对值无法测量。2有一高压钢筒,打开活塞后气体喷出筒外,当筒内压力与筒外压力相等时关闭活塞,此时筒内温度将()(A)不变(B)升高降低(D)无法判定答:(C)。压缩空气冲出钢筒时,筒内的气体对冲出的气体做功。由于冲出的速度很快,筒内气体来不及从环境吸热,相当于是个绝热过程,所以筒内气体的温度会下降。3有一真空钢筒,将阀门打开时,大气(视为理想气体)冲入瓶内,此时瓶内气体的温度将()(A)不变(B)升高(C)
49、降低(D)无法判定答:(B)。空气冲入钢筒时,外面的气体对冲入钢筒的气体做功。由于冲入的速度很快,筒内的气体来不及向环境放热,相当于是个绝热过程,所以筒内气体的温度会升高。4.将1mol373K,标准压力下的水,分别经历:(1)等温、等压可逆蒸发,(2)真空蒸发,变成373K,标准压力下的水气。这两种过程的功和热的关系为()W1Q2(B)W1W2Q1W2Q1Q2答:(A)。过程(1)中,系统要对外做功,W10,而过程(2)是真空蒸发,W2=0,所以W1Q2。5在一个密闭绝热的房间里放置一台电冰箱,将冰箱门打开,并接通电源使冰箱工作。(A)(C)答:(A)。()降低不一定过一段时间之后,室内的平
50、均气温将升高(B)不变(D)对冰箱做的电功,全转化为热释放在房间内。凡是在孤立系统中进行的过程,其U和厶H的值一定是()U0,H0(B)U=0,H=0(C)U0,HCu(s)(D)理想气体作等温可逆膨胀疋音压和W=0,两个条件缺一不可。(A)中f答:(B)。AH=Q的适用条件p是等外压,而非等压,(C)中有电功,(D)是个不等压过程。所以,只有(B)是适用的。10(A)(C)答:(B)。根据能量均分原理,在一般温度下,单原子分子只有3个平动自由度,所以C=3R。因为理想气体的C=C+R,所以C=-R。同理,V,m2p,mV,mp,m25775双原子分子的C=5R,贝9C=-R。现在,,=1.4
51、0=-,相当于C=5R,V,m2p,m25V,m2有一个理想气体的y=C/CV=1.40,则该气体为几原子分子?pV)单原子分子三原子分子(B)双原子分子(D)四原子分子Cp,m7R,这是双原子分子的特征。11反应的计量方程为H(g)+Cl(g)=2HCl(g),当以5molH(g)与4mol222Cl(g)混合发生反应,最后生成2molHCl(g)。则该反应进度E等于(71mol(B)2mol(C)4mol(D)5mol答:(A)。根据反应的计量方程,现在用生成物来表示反应的进度,则An2moL,二二hci=彳molv2HCl显然,反应物H(g)和Cl(g)都是过量的。2212.欲测定某有机
52、物的燃烧热Q,一般使反应在氧弹中进行,实验测得的热P效应为QV。已知两种热效应之间的关系为Q=Q+AnRT,式中的An是指()生成物与反应物总物质的量之差生成物与反应物中,气相物质的物质的量之差生成物与反应物中,凝聚相物质的物质的量之差生成物与反应物的总的热容差答:(B)。AnRT一项来源于A(pV)项,若假定气体是理想气体,在温度不变时A(pV)就等于AnRT(B)AH$(H0,g)=AH$(0,g)fm2cm2(D)AH$(H0,g)=AH$(H,g)fm2cm2在下述等式中,正确的是()AH$(H0,1)=AH$(O,g)fm2cm2(C)AH$(H0,1)=AH$(H,g)fm2cm2
53、答:(C)。根据标准摩尔燃烧焓的定义,只有:C)是正确的。因为O(g)是助燃2剂,其标准摩尔燃烧焓规定为零。H(g)的燃烧产物是H0(1),而不是HO(g)。22在298K时,石墨的标准摩尔生成焓AH$(C,石墨)的值fm()大于零(B)小于零(C)等于零(D)不能确定答:(C)。根据标准摩尔生成焓的定义,稳定单质的标准摩尔生成焓规定为零。现在人为选定,将石墨作为碳的稳定单质。在298K和标准压力下,已知AH$(C,石墨)=-393.5kJ-mol-i,cmAH$(C,金刚石)=-395.3kJ-mol-1,则金刚石的标准摩尔生成焓AH$(C,金刚石)cmfm的值等于()(A)-393.5kJ
54、mol-1-395.3kJmol-1(D)1.8kJ-mol-11.8kJ-mol-i答:(D)。因为人为选定,将石墨作为碳的稳定单质,所以石墨的标准摩尔燃烧焓就是二氧化碳的标准摩尔生成焓,即AH$(CO,g)=-393.5kJ-mol-1。金fm2刚石的标准摩尔燃烧焓就是金刚石燃烧为二氧化碳反应的摩尔反应焓变,即C(金刚石,s)+O(g,p$)=CO(g,p$)AH$=AH$(C金刚石)22rmcm利用标准摩尔生成焓计算标准摩尔反应焓变的公式,就可以得到金刚石的标准摩尔生成焓。AH$=AH$(C金刚石=AH$(CO,AH$金刚石)rmcmfm2fm所以AH$(C金刚石=AH$(CO,-gAH
55、$金(刚石)fmfm2cm=(-393.5+395.3)kJ-mol-i=1.8kJ-mol-i或者,根据石墨变为金刚石的结晶状态变换反应C金刚石16有关答:(A)(B)(C)(D)其焓H只是温度T的函数其热力学能U只是温度T的函数其热力学能和焓都只是温度T的函数其热力学能和焓不仅与温度T有关,还与气体的体积Vm或压力p(B)。可以从两种途径进行解释:C(石墨甘这个反应的标准摩尔反应焓变就等于金刚石的标准摩尔生成焓,利用两个物质的标准摩尔燃烧焓,就可以进行计算TOC o 1-5 h z HYPERLINK l bookmark196 o Current Document AH$(C金刚石=AH
56、(298K-vAH(B)fmrmBCmB=AH$(C石墨-AH$(金刚石)cmcm=(-393.5+395.3)kJ-mol-1=1.8kJ-mol-1某气体的状态方程为pV=RT+bp,b为大于零的常数,则下列结论正m确的是(1)将已知方程改写为p(V-b)=RT,与理想气体的状态方程对照,说明m这种气体的自身体积不能忽略,但是分子间的引力与理想气体一样,是小到可以忽略不计的。那么,它的热力学能也只是温度的函数。因为根据焓的定义式H二U+pV,还会牵涉到体积,所以(C)不一定正确。*(2)用数学的方法来证明。藉助于Maxwel1方程(见第三章),可以导出一个重要关系式对已知方程p(V-b)二
57、RT,求mdT丿v-pTR0二T-p=p-p=0(V-b)m或者,在公式T(dpIdf丿v-P的双方,都乘以(dV-(dP丿,得dp、dP丿T等式左边消去相同项,并因为(dp-IdT丿=-1,所以得0丿Vdp丿T、-pdp丿TdUJdV)(dV、=-T1-pdp丿IdT丿dp丿Tp丿TV=-T-+T-=0pp这说明了,在温度不变时,改变体积或压力,热力学能保持不变,所以只有(B)是正确的。五习题解析1.(1)一个系统的热力学能增加了100kJ,从环境吸收了40kJ的热,计算系统与环境的功的交换量。如果该系统在膨胀过程中对环境做了20kJ的功,同时吸收了20kJ的热,计算系统的热力学能变化值。解
58、:(1)根据热力学第一定律的数学表达式AU=Q+WW二AUQ100kJ-40kJ6即系统从环境得到了60kJ的功。(2)根据热力学第一定律的数学表达式AU=Q+WAU二Q+W20kJ20kJ系统吸收的热等于对环境做的功,保持系统本身的热力学能不变。2.在300K时,有10mol理想气体,始态的压力为1000kPa。计算在等温下,下列三个过程所做的膨胀功。(1)在100kPa压力下体积胀大1dm3;在100kPa压力下,气体膨胀到终态压力也等于100kPa;等温可逆膨胀到气体的压力等于100kPa。解:(1)这是等外压膨胀W=-pNV=-100kPax10-3m3=-100Je2)这也是等外压膨
59、胀,只是始终态的体积不知道,要通过理想气体的状态方程得到。-p(V-V)=e21(nRT-p(p2=nRrp1-Ip1丿10 x8.314x300 x(100-11000丿J二-22.45kJ3)对于理想气体的等温可逆膨胀W=nRTIn匕=nRTInpVp21=(10 x8.314x300)Jxln=-57.43kJ10003.在373K的等温条件下,1mol理想气体从始态体积25dm3,分别按下列四个过程膨胀到终态体积为100dm3。(1)向真空膨胀;(2)等温可逆膨胀;在外压恒定为气体终态压力下膨胀;先外压恒定为体积等于50dm3时气体的平衡压力下膨胀,当膨胀到50dm3以后,再在外压等于
60、100dm3时气体的平衡压力下膨胀。分别计算各个过程中所做的膨胀功,这说明了什么问题?解:(1)向真空膨胀,外压为零,所以W=012)理想气体的等温可逆膨胀VW二nRTIn12V225二(lx8.314x373)Jxln=4.30kJ1003)等外压膨胀DrriW=p(VV)=pV)=-(V)e21221V212=(1x8.3x437f0.10.0235)m2.33kJ0.13m4)分两步的等外压膨胀W=p(VV)p(VV)e,121e,23nRT(VV)nRT(VV)V21V32匸1+V、V223=nRT1=nRT|25+竺250100丿=nRT=(1x8.314x373)=J3.从计算说明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年质量管理与监督操作手册
- 儿童游乐场所安全管理规范(标准版)
- 会议风险评估与应对措施制度
- 公共交通线路优化调整制度
- 2026年浙江舟山群岛新区六横管理委员会招聘备考题库及参考答案详解一套
- 中意宁波生态园控股集团有限公司2025年第三次公开招聘备考题库及完整答案详解一套
- 2026年某央企数据库运维招聘备考题库附答案详解
- 养老院入住老人福利待遇保障制度
- 安全认知培训课件
- 养老院入住老人法律权益保护制度
- 2023-2024学年北京市海淀区清华附中八年级(上)期末数学试卷(含解析)
- 临终决策中的医患共同决策模式
- 2025年贵州省辅警考试真题附答案解析
- 防护网施工专项方案
- 2026年及未来5年市场数据中国聚甲醛市场运行态势及行业发展前景预测报告
- TCFLP0030-2021国有企业网上商城采购交易操作规范
- 2025广东省佛山市南海公证处招聘公证员助理4人(公共基础知识)测试题附答案解析
- (支行)2025年工作总结和2026年工作计划汇报
- 2025年秋统编版(新教材)初中历史七年级第一学期期末模拟试题及答案
- 金华市轨道交通控股集团运营有限公司应届生招聘考试真题2024
- 清淤工程分包合同范本
评论
0/150
提交评论