版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1将函数图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移个单位长度,则所得函数图象的一个对称中心为( )ABCD2已知,则( )ABC3D43周易历来被人们视作儒家群经之首,
2、它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法我们用近代术语解释为:把阳爻“- ”当作数字“1”,把阴爻“-”当作数字“0”,则八卦所代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤0000震0011坎0102兑0113依此类推,则六十四卦中的“屯”卦,符号“ ”表示的十进制数是( )A18B17C16D154若函数恰有3个零点,则实数的取值范围是( )ABCD5已知双曲线的左、右顶点分别为,点是双曲线上与不重合的动点,若, 则双曲线的离心率为()ABC4D26函数在的图象大致为ABCD7中国古代数学著作孙子算经中有这样
3、一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于( )ABCD8如图在一个的二面角的棱有两个点,线段分别在这个二面角的两个半平面内,且都垂直于棱,且,则的长为( )A4BC2D9已知函数的图象向左平移个单位后得到函数的图象,则的最小值为( )ABCD10已知双曲线的一个焦点为,点是的一条渐近线上关于原点对称的两点,以为直径的圆过且交的左支于两点,若,的面积为8,则的渐近线方程为( )ABCD11关于函数有下述四个结论:( )是偶函数;
4、在区间上是单调递增函数;在上的最大值为2; 在区间上有4个零点.其中所有正确结论的编号是( )ABCD12若P是的充分不必要条件,则p是q的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13 “北斗三号”卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R,若其近地点远地点离地面的距离大约分别是,则“北斗三号”卫星运行轨道的离心率为_.14已知两点,若直线上存在点满足,则实数满足的取值范围是_15六位同学坐在一排,现让六位同学重新坐,恰有两位同学坐自己原来的位置,则不同的坐法有_种(用数字回答).16已知数列的各项均为正
5、数,记为的前n项和,若,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分) 选修4-4:极坐标与参数方程 在直角坐标系中,曲线的参数方程为(是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若射线与曲线交于,两点,与曲线交于,两点,求取最大值时的值18(12分)已知圆外有一点,过点作直线(1)当直线与圆相切时,求直线的方程;(2)当直线的倾斜角为时,求直线被圆所截得的弦长19(12分)在创建“全国文明卫生城”过程中,运城市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识
6、问卷调查(一位市民只能参加一次),通过随机抽样,得到参加问卷调查的人的得分统计结果如表所示:.组别频数(1)由频数分布表可以大致认为,此次问卷调查的得分似为这人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求;(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;每次获赠的随机话费和对应的概率为:赠送话费的金额(单位:元)概率现有市民甲参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望.附:参考数据与公式:,若,则,20(12分)选修4-5:不等式选讲
7、已知函数()解不等式;()对及,不等式恒成立,求实数的取值范围.21(12分)已知函数.(1)当时,解不等式;(2)设不等式的解集为,若,求实数的取值范围.22(10分)已知函数.(1)当时.求函数在处的切线方程;定义其中,求;(2)当时,设,(为自然对数的底数),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】先化简函数解析式,再根据函数的图象变换规律,可得所求函数的解析式为,再由正弦函数的对称性得解.【详解】,将函数图象上各点的横坐标伸长到原来的3倍,所得
8、函数的解析式为,再向右平移个单位长度,所得函数的解析式为,,可得函数图象的一个对称中心为,故选D.【点睛】三角函数的图象与性质是高考考查的热点之一,经常考查定义域、值域、周期性、对称性、奇偶性、单调性、最值等,其中公式运用及其变形能力、运算能力、方程思想等可以在这些问题中进行体现,在复习时要注意基础知识的理解与落实三角函数的性质由函数的解析式确定,在解答三角函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解2A【解析】根据复数相等的特征,求出和,再利用复数的模公式,即可得出结
9、果.【详解】因为,所以,解得则.故选:A.【点睛】本题考查相等复数的特征和复数的模,属于基础题.3B【解析】由题意可知“屯”卦符号“”表示二进制数字010001,将其转化为十进制数即可.【详解】由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数字010001,转化为十进制数的计算为120+124=1故选:B【点睛】本题主要考查数制是转化,新定义知识的应用等,意在考查学生的转化能力和计算求解能力.4B【解析】求导函数,求出函数的极值,利用函数恰有三个零点,即可求实数的取值范围.【详解】函数的导数为,令,则或,上单调递减,上单调递增,所以0或是函数y的极值点,函数的极值为:,函数恰有三个零点
10、,则实数的取值范围是:.故选B.【点睛】该题考查的是有关结合函数零点个数,来确定参数的取值范围的问题,在解题的过程中,注意应用导数研究函数图象的走向,利用数形结合思想,转化为函数图象间交点个数的问题,难度不大.5D【解析】设,根据可得,再根据又,由可得,化简可得,即可求出离心率【详解】解:设,即,又,由可得,即,故选:D【点睛】本题考查双曲线的方程和性质,考查了斜率的计算,离心率的求法,属于基础题和易错题6A【解析】因为,所以排除C、D当从负方向趋近于0时,可得.故选A7C【解析】从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C.8A【解析】由,两边平方后展开整理,即可求
11、得,则的长可求【详解】解:,故选:【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题9A【解析】首先求得平移后的函数,再根据求的最小值.【详解】根据题意,的图象向左平移个单位后,所得图象对应的函数,所以,所以又,所以的最小值为故选:A【点睛】本题考查三角函数的图象变换,诱导公式,意在考查平移变换,属于基础题型.10B【解析】由双曲线的对称性可得即,又,从而可得的渐近线方程.【详解】设双曲线的另一个焦点为,由双曲线的对称性,四边形是矩形,所以,即,由,得:,所以,所以,所以,所以,的渐近线方程为.故选B【点睛】本
12、题考查双曲线的简单几何性质,考查直线与圆的位置关系,考查数形结合思想与计算能力,属于中档题.11C【解析】根据函数的奇偶性、单调性、最值和零点对四个结论逐一分析,由此得出正确结论的编号.【详解】的定义域为.由于,所以为偶函数,故正确.由于,所以在区间上不是单调递增函数,所以错误.当时,且存在,使.所以当时,;由于为偶函数,所以时,所以的最大值为,所以错误.依题意,当时,所以令,解得,令,解得.所以在区间,有两个零点.由于为偶函数,所以在区间有两个零点.故在区间上有4个零点.所以正确.综上所述,正确的结论序号为.故选:C【点睛】本小题主要考查三角函数的奇偶性、单调性、最值和零点,考查化归与转化的
13、数学思想方法,属于中档题.12B【解析】试题分析:通过逆否命题的同真同假,结合充要条件的判断方法判定即可由p是的充分不必要条件知“若p则”为真,“若则p”为假,根据互为逆否命题的等价性知,“若q则”为真,“若则q”为假,故选B考点:逻辑命题二、填空题:本题共4小题,每小题5分,共20分。13【解析】画出图形,结合椭圆的定义和题设条件,求得的值,即可求得椭圆的离心率,得到答案.【详解】如图所示,设椭圆的长半轴为,半焦距为,因为地球半径为R,若其近地点远地点离地面的距离大约分别是,可得,解得,所以椭圆的离心率为.故答案为:.【点睛】本题主要考查了椭圆的离心率的求解,其中解答中熟记椭圆的几何性质,列
14、出方程组,求得的值是解答的关键,着重考查了推理与计算能力,属于基础题.14【解析】问题转化为求直线与圆有公共点时,的取值范围,利用数形结合思想能求出结果【详解】解:直线,点,直线上存在点满足,的轨迹方程是如图,直线与圆有公共点,圆心到直线的距离:,解得实数的取值范围为故答案为:【点睛】本题主要考查直线方程、圆、点到直线的距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,属于中档题15135【解析】根据题意先确定2个人位置不变,共有种选择,再确定4个人坐4个位置,但是不能坐原来的位置,计算得到答案.【详解】根据题意先确定2个人位置不变,共有种选择.再确定4个
15、人坐4个位置,但是不能坐原来的位置,共有种选择,故不同的坐法有.故答案为:.【点睛】本题考查了分步乘法原理,意在考查学生的计算能力和应用能力.16127【解析】已知条件化简可化为,等式两边同时除以,则有 ,通过求解方程可解得,即证得数列为等比数列,根据已知即可解得所求.【详解】由.故答案为:.【点睛】本题考查通过递推公式证明数列为等比数列,考查了等比的求和公式,考查学生分析问题的能力,难度较易.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (1) 的极坐标方程为.曲线的直角坐标方程为. (2) 【解析】(1)先得到的一般方程,再由极坐标化直角坐标的公式得到一般方程,将代入
16、得,得到曲线的直角坐标方程;(2)设点、的极坐标分别为,将 分别代入曲线、极坐标方程得:,之后进行化一,可得到最值,此时,可求解.【详解】(1)由得,将代入得:,故曲线的极坐标方程为.由得,将代入得,故曲线的直角坐标方程为.(2)设点、的极坐标分别为,将 分别代入曲线、极坐标方程得:,则 ,其中为锐角,且满足,当时,取最大值,此时, 【点睛】这个题目考查了参数方程化为普通方程的方法,极坐标化为直角坐标的方法,以及极坐标中极径的几何意义,极径代表的是曲线上的点到极点的距离,在参数方程和极坐标方程中,能表示距离的量一个是极径,一个是t的几何意义,其中极径多数用于过极点的曲线,而t的应用更广泛一些.
17、18(1)或(2)【解析】(1)根据题意分斜率不存在和斜率存在两种情况即可求得结果;(2)先求出直线方程,然后求得圆心与直线的距离,由弦长公式即可得出答案.【详解】解: (1)由题意可得,直线与圆相切当斜率不存在时,直线的方程为,满足题意当斜率存在时,设直线的方程为,即,解得直线的方程为直线的方程为或(2)当直线的倾斜角为时,直线的方程为圆心到直线的距离为弦长为【点睛】本题考查了直线的方程、直线与圆的位置关系、点到直线的距离公式及弦长公式,培养了学生分析问题与解决问题的能力.19(1)(2)详见解析【解析】由题意,根据平均数公式求得,再根据,参照数据求解.由题意得,获赠话费的可能取值为,求得相
18、应的概率,列出分布列求期望.【详解】由题意得综上,由题意得,获赠话费的可能取值为,的分布列为:【点睛】本题主要考查正态分布和离散型随机变量的分布列及期望,还考查了运算求解的能力,属于中档题.20().().【解析】详解:()当时,由,解得;当时,不成立;当时,由,解得.所以不等式的解集为.()因为,所以.由题意知对,即,因为,所以,解得.【点睛】 绝对值不等式解法的基本思路是:去掉绝对值号,把它转化为一般的不等式求解,转化的方法一般有:绝对值定义法;平方法;零点区域法 不等式的恒成立可用分离变量法若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围这种方法本质也是求最值一般有: 为参数)恒成立 为参数)恒成立 21(1)或;(2)【解析】(1)使用零点分段法,讨论分段的取值范围,然后取它们的并集,可得结果.(2)利用等价转化的思想,可得不等式在恒成立,然后解出解集,根据集合间的包含关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 渠道改造合同范本
- 苗木订购协议书
- 融资出租协议书
- 视频购置协议书
- 设备出让协议书
- 设施用地协议书
- 评审廉洁协议书
- 试驾车辆协议书
- 2025枣庄市卫生健康服务中心招聘120急救电话调度员1人考试重点试题及答案解析
- 库房共管协议书
- 广州市南沙区南沙街道社区专职招聘考试真题2024
- 孤独症谱系障碍的神经发育轨迹研究
- 2025年12月长沙县第二人民医院公开招聘编外专业技术人员4人笔试考试备考试题及答案解析
- 2025年秋小学音乐湘艺版四年级上册期末测试卷及答案
- 2025年安徽合肥庐江县部分国有企业招聘工作人员17人笔试参考题库附答案
- 输液连接装置安全管理专家共识解读
- 作词进阶教学课件下载
- 2025上海复旦大学人事处招聘办公室行政管理助理岗位1名考试参考试题及答案解析
- 燃气巡线员安全培训课件
- 2025版离婚协议书样本:婚姻关系解除与子女抚养安排
- GJB827B--2020军事设施建设费用定额
评论
0/150
提交评论