2022届湖北省示范初中数学高二下期末经典试题含解析_第1页
2022届湖北省示范初中数学高二下期末经典试题含解析_第2页
2022届湖北省示范初中数学高二下期末经典试题含解析_第3页
2022届湖北省示范初中数学高二下期末经典试题含解析_第4页
2022届湖北省示范初中数学高二下期末经典试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线的两个焦点分别为,过右焦点作实轴的垂线交双曲线于,两点,若是直角三角形,则双曲线的离心率为( )ABCD2某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组

2、:40,50), 50,60), 60,70), 70,80), 80,90), 90,100加以统计,得到如图所示的频率分布直方图已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A588B480C450D1203要得到函数的图象,只需将函数的图象( )A向左平移个单位B向右平移个单位C向左平移个单位D向右平移个单位4设,则与大小关系为( )ABCD5是虚数单位,则的虚部是( )A-2B-1CD6一个几何体的三视图如图所示,若主视图是上底为2,下底为4,高为1的等腰梯形,左视图是底边为2的等腰三角形,则该几何体的体积为( )ABC2D47阅读如图所示的程序框

3、图,则输出的S等于( )A38B40C20D328函数的一个零点落在下列哪个区间( )A(0,1)B(1,2)C(2,3)D(3,4)9设ABC的三边长分别为a,b,c,ABC的面积为S,则ABC的内切圆半径为.将此结论类比到空间四面体:设四面体的四个面的面积分别为S1,S2,S3,S4,体积为V,则四面体的内切球半径为r( )ABCD10已知函数的定义域为,为的导函数,且,若,则函数的取值范围为( )ABCD11已知随机变量服从正态分布,则ABCD12已知函数,若函数在区间上为单调递减函数,则实数的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在的展开式中,第4

4、项的二项式系数是_(用数字作答).14在如图所示的十一面体中,用种不同颜色给这个几何体各个顶点染色,每个顶点染一种颜色,要求每条棱的两端点异色,则不同的染色方案种数为_15若圆柱的轴截面为正方形,且此正方形面积为4,则该圆柱的体积为_16已知随机变量的分布列如下表:其中是常数,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知的展开式中第4项和第8项的二项式系数相等()求的值和这两项的二项式系数;()在的展开式中,求含项的系数(结果用数字表示)18(12分)已知正三棱柱中,点为的中点,点在线段上.()当时,求证;()是否存在点,使二面角等于60?若存在

5、,求的长;若不存在,请说明理由.19(12分)已知某厂生产的电子产品的使用寿命(单位:小时)服从正态分布,且,(1)现从该厂随机抽取一件产品,求其使用寿命在的概率;(2)现从该厂随机抽取三件产品,记抽到的三件产品使用寿命在的件数为,求的分布列和数学期望20(12分)某校从参加高二年级期末考试的学生中抽出60名学生,并统计了他们的物理成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段,后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:(1)求出物理成绩低于50分的学生人数;(2)估计这次考试物理学科及格率(60分以上为及格);(3)从物理成绩不及格的学生中选x人,其中恰

6、有一位成绩不低于50分的概率为,求此时x的值;21(12分)设函数的最小值为.(1)求的值;(2)若,求的取值范围.22(10分)在平面直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.(I)求曲线的普通方程和直线的直角坐标方程;(II)求曲线上的点到直线的距离的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:由题意结合双曲线的结合性质整理计算即可求得最终结果.详解:由双曲线的对称性可知:,则为等腰直角三角形,故,由双曲线的通径公式可得:,据此可

7、知:,即,整理可得:,结合解方程可得双曲线的离心率为:.本题选择B选项.点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:求出a,c,代入公式;只需要根据一个条件得到关于a,b,c的齐次式,结合b2c2a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)2、B【解析】试题分析:根据频率分布直方图,得;该模块测试成绩不少于60分的频率是1-(0.005+0.015)10=0.8,对应的学生人数是6000.8=480考点:频率分布直方图3、B【解析】=cos2x,=

8、,所以只需将函数的图象向右平移个单位可得到故选B4、A【解析】,选A.5、B【解析】根据复数的除法运算把复数化为代数形式后可得其虚部【详解】由题意得,所以复数的虚部是故选B【点睛】本题考查复数的运算和复数的基本概念,解答本题时容易出现的错误是认为复数的虚部为,对此要强化对基本概念的理解和掌握,属于基础题6、A【解析】由三视图可知,该几何体是一个三棱柱截掉两个三棱锥,利用所给数据,求出三棱柱与三棱锥的体积,从而可得结果.【详解】由三视图可知,该几何体是一个三棱柱截掉两个三棱锥,画出几何体的直观图,如图,把几何体补形为一个直三棱柱,由三视图的性质可知三棱柱的底面面积,高,所以,,所以,几何体的体积

9、为.故选A.【点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.7、B【解析】模拟程序,依次写出各步的结果,即可得到所求输出值【详解】程序的起始为第一次变为第二次变为第三次变为第四次变为满足条件可得故选:B.【点睛】本题考查程序框图中的循环结构,难度较易.

10、8、B【解析】根据函数的零点存在原理判断区间端点处函数值的符号情况,从而可得答案.【详解】由的图像在上是连续不间断的.且在上单调递增,又,,根据函数的零点存在原理有:在在有唯一零点且在内.故选:B.【点睛】本题考查函数的零点所在区间,利用函数的零点存在原理可解决,属于基础题.9、C【解析】由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.【详解】设四面体的内切球的球心为O,则球心O到四个面的距离都是r,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和则四面体的体积为:,所以.故选:C【点睛】本题主要考查了类比推理的应用,

11、属于中档题.10、B【解析】分析:根据题意求得函数的解析式,进而得到的解析式,然后根据函数的特征求得最值详解:由,得,设(为常数),当x=0时,;当时,故当时,当时等号成立,此时;当时,当时等号成立,此时综上可得,即函数的取值范围为故选B点睛:解答本题时注意从所给出的条件出发,并结合导数的运算法则利用构造法求出函数的解析式;求最值时要结合函数解析式的特征,选择基本不等式求解,求解时注意应用不等式的条件,确保等号能成立11、D【解析】,选D.12、B【解析】因为,所以,由正弦函数的单调性可得,即,也即,所以,应选答案B。点睛:解答本题的关键是将函数看做正弦函数,然后借助正弦函数的单调性与单调区间

12、的关系,依据区间端点之间的大小关系建立不等式组,最后通过解不等式组使得问题巧妙获解。二、填空题:本题共4小题,每小题5分,共20分。13、20【解析】利用二项式的通项公式即可求出.【详解】二项式的通项公式为:.令, 所以第4项的二项式系数是故答案为:20【点睛】本题考查了二项式某项的二项式系数,解决本题要注意与二项式某项的展开式系数的不同.14、6【解析】分析:首先分析几何体的空间结构,然后结合排列组合计算公式整理计算即可求得最终结果.详解:空间几何体由11个顶点确定,首先考虑一种涂色方法:假设A点涂色为颜色CA,B点涂色为颜色CB,C点涂色为颜色CC,由AC的颜色可知D需要涂颜色CB,由AB

13、的颜色可知E需要涂颜色CC,由BC的颜色可知F需要涂颜色CA,由DE的颜色可知G需要涂颜色CA,由DF的颜色可知I需要涂颜色CC,由GI的颜色可知H需要涂颜色CB,据此可知,当ABC三个顶点的颜色确定之后,其余点的颜色均为确定的,用三种颜色给ABC的三个顶点涂色的方法有种,故给题中的几何体染色的不同的染色方案种数为6.点睛:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置)(2)不同元素的分配问题,往往是先分组再分配在分组时,通常有三种类型:不

14、均匀分组;均匀分组;部分均匀分组,注意各种分组类型中,不同分组方法的求法15、【解析】根据圆柱的结构特征可知底面半径和高,代入体积公式计算即可【详解】解:圆柱的轴截面是正方形,且面积为4,圆柱的底面半径,高,圆柱的体积故答案为【点睛】本题考查了圆柱的结构特征和体积的计算,属于基础题16、【解析】根据分布列中概率和为可构造方程求得,由求得结果.【详解】由分布列可知:,解得:则本题正确结果:【点睛】本题考查分布列性质的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、();()285【解析】()由题意知:得到,代入计算得到答案.()分别计算每个展开式含项的系数,

15、再把系数相加得到答案.【详解】解:(),; ()方法一:含项的系数为 . 方法二: 含的系数为.【点睛】本题考查了展开式的二项式系数,特定项系数,意在考查学生的计算能力.18、()证明见解析;()存在点,当时,二面角等于.【解析】试题分析:()证明:连接,由为正三棱柱为正三角形,又平面平面平面.易得丄平面.()假设存在点满足条件,设.由丄平面,建立空间直角坐标系,求得平面的一个法向量为,平面的一个法向量为试题解析:()证明:连接,因为为正三棱柱,所以为正三角形,又因为为的中点,所以,又平面平面,平面平面,所以平面,所以.因为,所以,所以在中,在中,所以,即.又,所以丄平面,面,所以.()假设存

16、在点满足条件,设.取的中点,连接,则丄平面,所以,分别以所在直线为轴建立空间直角坐标系,则,所以,设平面的一个法向量为,则,令,得,同理,平面的一个法向量为,则,取,.,解得,故存在点,当时,二面角等于.19、()0.08.()见解析.【解析】试题分析:(1)根据身高 服从正态分布,计算出的值,则可得到的值;(2)求出的值,由,求出对应的概率值,得出随机变量的分布列,计算即可试题解析:()因为,所以 .所以.即使用寿命在的概率为0.08.()因为 ,所以.所以;.所以分布列为:所以 .(或.)【点睛】本题考查了离散型随机就是的分布列和数学期望的应用问题,解题时要注意二项分布的性质的合理运用20

17、、(1)6;(2)75%;(3)4;【解析】(1)利用频率分布直方图可求得物理成绩低于分的频率,利用频率乘以总数可得所求频数;(2)根据频率分布直方图可计算得到物理成绩不低于分的频率,从而得到及格率;(3)计算出成绩不低于分的人数,根据古典概型概率计算公式可列出关于的方程,解方程求得结果.【详解】(1)物理成绩低于分的频率为:物理成绩低于分的学生人数为:人(2)物理成绩不低于分的频率为:这次考试物理学科及格率为:(3)物理成绩不及格的学生共有:人其中成绩不低于分的有:人由题意可知:,解得:【点睛】本题考查利用频率分布直方图计算频数、根据样本数据特征估计总体数据特征、古典概型概率的应用问题;关键是熟练掌握频率分布直方图的相关知识点,考查概率和统计知识的综合应用.21、(1);(2).【解析】(1)由题意可把含两个绝对值的函数进行对去绝对值得到一个分段函数,再由分段函数可得到函数的最小值;(2)利用基本不等式和三角不等式即可求出的取值范围.【详解】(1),显然当时,取得最小值.(2),.【点睛】本题考查了含两个绝对值的分段函数,基本不等式以及三角不等式求最值,属于一般题.22、(I

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论