




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、常系数高阶线性微分方程1第1页,共35页,2022年,5月20日,6点5分,星期三一、二阶常系数线性非齐次微分方程 :根据解的结构定理 , 其通解为非齐次方程特解齐次方程通解求特解的方法根据 f (x) 的特殊形式 ,的待定形式,代入原方程比较两端表达式以确定待定系数 . 待定系数法2第2页,共35页,2022年,5月20日,6点5分,星期三1、 为实数 ,设特解为其中 为待定多项式 , 代入原方程 , 得 (1) 若 不是特征方程的根, 则取从而得到特解形式为为 m 次多项式 .Q (x) 为 m 次待定系数多项式3第3页,共35页,2022年,5月20日,6点5分,星期三(2) 若 是特征
2、方程的单根 , 为m 次多项式,故特解形式为(3) 若 是特征方程的重根 , 是 m 次多项式,故特解形式为小结对方程,此结论可推广到高阶常系数线性微分方程 .即即当 是特征方程的 k 重根 时,可设特解4第4页,共35页,2022年,5月20日,6点5分,星期三综上讨论注:上述结论可推广到n阶常系数非齐次线性微分方程(k是重根次数).5第5页,共35页,2022年,5月20日,6点5分,星期三例1.的一个特解.解: 本题而特征方程为不是特征方程的根 .设所求特解为代入方程 :比较系数, 得于是所求特解为6第6页,共35页,2022年,5月20日,6点5分,星期三例2. 的通解. 解: 本题特
3、征方程为其根为对应齐次方程的通解为设非齐次方程特解为比较系数, 得因此特解为代入方程得所求通解为7第7页,共35页,2022年,5月20日,6点5分,星期三例3. 求解定解问题解: 本题特征方程为其根为设非齐次方程特解为代入方程得故故对应齐次方程通解为原方程通解为由初始条件得所求解为8第8页,共35页,2022年,5月20日,6点5分,星期三解例4.则由牛顿第二定律得解得代入上式得9第9页,共35页,2022年,5月20日,6点5分,星期三2、第二步 求出如下两个方程的特解分析思路:第一步 将 f (x) 转化为第三步 利用叠加原理求出原方程的特解第四步 分析原方程特解的特点10第10页,共3
4、5页,2022年,5月20日,6点5分,星期三第一步利用欧拉公式将 f (x) 变形11第11页,共35页,2022年,5月20日,6点5分,星期三 第二步 求如下两方程的特解 是特征方程的 k 重根 ( k = 0, 1), 故等式两边取共轭 :为方程 的特解 .设则 有特解:12第12页,共35页,2022年,5月20日,6点5分,星期三第三步 求原方程的特解 利用第二步的结果, 根据叠加原理, 原方程有特解 :原方程 均为 m 次多项式 .13第13页,共35页,2022年,5月20日,6点5分,星期三第四步 分析因均为 m 次实多项式 .本质上为实函数 ,14第14页,共35页,202
5、2年,5月20日,6点5分,星期三小 结:对非齐次方程则可设特解:其中 为特征方程的 k 重根 ( k = 0, 1), 上述结论也可推广到高阶方程的情形.15第15页,共35页,2022年,5月20日,6点5分,星期三例5. 的一个特解 .解: 本题 特征方程故设特解为不是特征方程的根,代入方程得比较系数 , 得于是求得一个特解16第16页,共35页,2022年,5月20日,6点5分,星期三例6. 的通解. 解: 特征方程为其根为对应齐次方程的通解为比较系数, 得因此特解为代入方程:所求通解为为特征方程的单根 ,因此设非齐次方程特解为17第17页,共35页,2022年,5月20日,6点5分,
6、星期三例7.解: (1) 特征方程有二重根所以设非齐次方程特解为(2) 特征方程有根利用叠加原理 , 可设非齐次方程特解为设下列高阶常系数线性非齐次方程的特解形式:18第18页,共35页,2022年,5月20日,6点5分,星期三当重力与弹性力抵消时, 物体处于 平衡状态, 上节例1. 质量为m的物体自由悬挂在一端固定的弹簧上,力作用下作往复运动,解:阻力的大小与运动速度下拉物体使它离开平衡位置后放开,若用手向物体在弹性力与阻取平衡时物体的位置为坐标原点,建立坐标系如图.设时刻 t 物位移为 x(t).(1) 自由振动方程:成正比, 方向相反.建立位移满足的微分方程.(2) 强迫振动方程:19第
7、19页,共35页,2022年,5月20日,6点5分,星期三例8.求物体的运动规律. 解: 问题归结为求解无阻尼强迫振动方程 当p k 时, 齐次通解: 非齐次特解形式:因此原方程之解为上节例1 中若设物体只受弹性恢复力 f和铅直干扰力代入可得: 20第20页,共35页,2022年,5月20日,6点5分,星期三当干扰力的角频率 p 固有频率 k 时,自由振动强迫振动 当 p = k 时, 非齐次特解形式:代入可得: 方程的解为 21第21页,共35页,2022年,5月20日,6点5分,星期三若要利用共振现象, 应使 p 与 k 尽量靠近, 或使 随着 t 的增大 , 强迫振动的振幅这时产生共振现
8、象 .可无限增大,若要避免共振现象, 应使 p 远离固有频率 k ;p = k .自由振动强迫振动对机械来说, 共振可能引起破坏作用, 如桥梁被破坏,电机机座被破坏等,但对电磁振荡来说, 共振可能起有利作用,如收音机的调频放大即是利用共振原理. 22第22页,共35页,2022年,5月20日,6点5分,星期三内容小结 为特征方程的 k (0, 1, 2) 重根,则设特解为为特征方程的 k (0, 1 )重根, 则设特解为3. 上述结论也可推广到高阶方程的情形.23第23页,共35页,2022年,5月20日,6点5分,星期三思考与练习时可设特解为 时可设特解为 提示:1 . (填空) 设24第2
9、4页,共35页,2022年,5月20日,6点5分,星期三2. 求微分方程的通解 (其中为实数 ) .解: 特征方程特征根:对应齐次方程通解:时,代入原方程得故原方程通解为时,代入原方程得故原方程通解为25第25页,共35页,2022年,5月20日,6点5分,星期三3. 已知二阶常微分方程有特解求微分方程的通解 .解: 将特解代入方程得恒等式比较系数得故原方程为对应齐次方程通解:原方程通解为26第26页,共35页,2022年,5月20日,6点5分,星期三二、欧拉方程欧拉方程 常系数线性微分方程27第27页,共35页,2022年,5月20日,6点5分,星期三欧拉方程的算子解法: 则计算繁! 28第
10、28页,共35页,2022年,5月20日,6点5分,星期三则由上述计算可知: 用归纳法可证 于是欧拉方程 转化为常系数线性方程:29第29页,共35页,2022年,5月20日,6点5分,星期三例1. 解:则原方程化为亦即其根则对应的齐次方程的通解为特征方程 30第30页,共35页,2022年,5月20日,6点5分,星期三 的通解为换回原变量, 得原方程通解为设特解:代入确定系数, 得31第31页,共35页,2022年,5月20日,6点5分,星期三例2.解: 将方程化为(欧拉方程) 则方程化为即特征根:设特解:代入 解得 A = 1,所求通解为 32第32页,共35页,2022年,5月20日,6点5分,星期三例3.解: 由题设得定解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年软件设计师职业规划与目标设定试题及答案
- 铺设成功之路的个人策略计划
- 财务问题解决能力的提升策略计划
- 2025年的房地产租赁合同
- 主管如何应对团队变化计划
- 软件设计师考试中的创新思维试题及答案
- 2025建筑装饰合同模板范本(律师制定版本)
- 2025【生态保护区电力工程承包合同】 解除合同及补偿政策
- 法学概论与实际法律职业的关系试题及答案
- 2025年计算机测试实战试题及答案
- 华为HCIA-Transmission-H31-311v2试题及答案
- 活动板房制作安装施工合同
- 登高车高空作业施工方案
- 2024版抗肿瘤药物相关肝损伤诊疗指南解读
- 2024年合肥市网约配送员技能竞赛理论考试题库(含答案)
- 麻醉药品和精神药品管理培训-2
- 长江散货码头建设工程项目可行性研究报告
- OTN在地铁行业中的应用
- 创新方法与创新设计智慧树知到期末考试答案章节答案2024年青岛科技大学
- 大学体育与健康智慧树知到期末考试答案章节答案2024年齐鲁师范学院
- 产品全生命周期管理流程
评论
0/150
提交评论