重庆49中2023学年高三第二次诊断性检测数学试卷(含解析)_第1页
重庆49中2023学年高三第二次诊断性检测数学试卷(含解析)_第2页
重庆49中2023学年高三第二次诊断性检测数学试卷(含解析)_第3页
重庆49中2023学年高三第二次诊断性检测数学试卷(含解析)_第4页
重庆49中2023学年高三第二次诊断性检测数学试卷(含解析)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年高考数学模拟测试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1运行如图所示的程序框图,若输出的的值为99,则判断框中可以填( )ABCD2天干地支,简称为干支,源自中国远古时代对天象的观测.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”称为十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”称为十二地支.

2、干支纪年法是天干和地支依次按固定的顺序相互配合组成,以此往复,60年为一个轮回.现从农历2000年至2019年共20个年份中任取2个年份,则这2个年份的天干或地支相同的概率为( )ABCD3已知集合,则为( )A0,2)B(2,3C2,3D(0,24已知等差数列的前项和为,则( )A25B32C35D405已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的( )ABCD6已知,表示两个不同的平面,l为内的一条直线,则“是“l”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件7国家统计局服务业调查中心和中国物流与采购联合会发布的2018

3、年10月份至2019年9月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是( )A12个月的PMI值不低于50%的频率为B12个月的PMI值的平均值低于50%C12个月的PMI值的众数为49.4%D12个月的PMI值的中位数为50.3%8已知函数,若有2个零点,则实数的取值范围为( )ABCD9若复数满足,则的虚部为( )A5BCD-510设函数满足,则的图像可能是ABCD11若,点C在AB上,且,设,则的值为( )ABCD12已知命题,那么为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若函数 (R,)满足,且的最小值等于,则的值为_.14函

4、数的定义域为_15经过椭圆中心的直线与椭圆相交于、两点(点在第一象限),过点作轴的垂线,垂足为点.设直线与椭圆的另一个交点为.则的值是_16从2、3、5、7、11、13这六个质数中任取两个数,这两个数的和仍是质数的概率是_(结果用最简分数表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知直线:与抛物线切于点,直线:过定点Q,且抛物线上的点到点Q的距离与其到准线距离之和的最小值为.(1)求抛物线的方程及点的坐标;(2)设直线与抛物线交于(异于点P)两个不同的点A、B,直线PA,PB的斜率分别为,那么是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.1

5、8(12分)在中,为边上一点,.(1)求;(2)若,求.19(12分)已知二阶矩阵A=abcd,矩阵A属于特征值1=-1的一个特征向量为120(12分)已知点到抛物线C:y1=1px准线的距离为1()求C的方程及焦点F的坐标;()设点P关于原点O的对称点为点Q,过点Q作不经过点O的直线与C交于两点A,B,直线PA,PB,分别交x轴于M,N两点,求的值21(12分)在平面直角坐标系中,已知椭圆的中心为坐标原点焦点在轴上,右顶点到右焦点的距离与它到右准线的距离之比为(1)求椭圆的标准方程;(2)若是椭圆上关于轴对称的任意两点,设,连接交椭圆于另一点求证:直线过定点并求出点的坐标;(3)在(2)的条

6、件下,过点的直线交椭圆于两点,求的取值范围22(10分)如图,正方形是某城市的一个区域的示意图,阴影部分为街道,各相邻的两红绿灯之间的距离相等,处为红绿灯路口,红绿灯统一设置如下:先直行绿灯30秒,再左转绿灯30秒,然后是红灯1分钟,右转不受红绿灯影响,这样独立的循环运行.小明上学需沿街道从处骑行到处(不考虑处的红绿灯),出发时的两条路线()等可能选择,且总是走最近路线.(1)请问小明上学的路线有多少种不同可能?(2)在保证通过红绿灯路口用时最短的前提下,小明优先直行,求小明骑行途中恰好经过处,且全程不等红绿灯的概率;(3)请你根据每条可能的路线中等红绿灯的次数的均值,为小明设计一条最佳的上学

7、路线,且应尽量避开哪条路线?2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】模拟执行程序框图,即可容易求得结果.【题目详解】运行该程序:第一次,;第二次,;第三次,;第九十八次,;第九十九次,此时要输出的值为99.此时.故选:C.【答案点睛】本题考查算法与程序框图,考查推理论证能力以及化归转化思想,涉及判断条件的选择,属基础题.2、B【答案解析】利用古典概型概率计算方法分析出符合题意的基本事件个数,结合组合数的计算即可出求得概率.【题目详解】20个年份中天干相同的有10组(每组2

8、个),地支相同的年份有8组(每组2个),从这20个年份中任取2个年份,则这2个年份的天干或地支相同的概率.故选:B.【答案点睛】本小题主要考查古典概型的计算,考查组合数的计算,考查学生分析问题的能力,难度较易.3、B【答案解析】先求出,得到,再结合集合交集的运算,即可求解.【题目详解】由题意,集合,所以,则,所以.故选:B.【答案点睛】本题主要考查了集合的混合运算,其中解答中熟记集合的交集、补集的定义及运算是解答的关键,着重考查了计算能力,属于基础题.4、C【答案解析】设出等差数列的首项和公差,即可根据题意列出两个方程,求出通项公式,从而求得【题目详解】设等差数列的首项为,公差为,则,解得,即

9、有故选:C【答案点睛】本题主要考查等差数列的通项公式的求法和应用,涉及等差数列的前项和公式的应用,属于容易题5、C【答案解析】试题分析:通过对以下四个四棱锥的三视图对照可知,只有选项C是符合要求的.考点:三视图6、A【答案解析】试题分析:利用面面平行和线面平行的定义和性质,结合充分条件和必要条件的定义进行判断解:根据题意,由于,表示两个不同的平面,l为内的一条直线,由于“,则根据面面平行的性质定理可知,则必然中任何一条直线平行于另一个平面,条件可以推出结论,反之不成立,“是“l”的充分不必要条件故选A考点:必要条件、充分条件与充要条件的判断;平面与平面平行的判定7、D【答案解析】根据图形中的信

10、息,可得频率、平均值的估计、众数、中位数,从而得到答案.【题目详解】对A,从图中数据变化看,PMI值不低于50%的月份有4个,所以12个月的PMI值不低于50%的频率为,故A正确;对B,由图可以看出,PMI值的平均值低于50%,故B正确;对C,12个月的PMI值的众数为49.4%,故C正确,;对D,12个月的PMI值的中位数为49.6%,故D错误故选:D.【答案点睛】本题考查频率、平均值的估计、众数、中位数计算,考查数据处理能力,属于基础题.8、C【答案解析】令,可得,要使得有两个实数解,即和有两个交点,结合已知,即可求得答案.【题目详解】令,可得,要使得有两个实数解,即和有两个交点,令,可得

11、,当时,函数在上单调递增;当时,函数在上单调递减.当时,若直线和有两个交点,则.实数的取值范围是.故选:C.【答案点睛】本题主要考查了根据零点求参数范围,解题关键是掌握根据零点个数求参数的解法和根据导数求单调性的步骤,考查了分析能力和计算能力,属于中档题.9、C【答案解析】把已知等式变形,再由复数代数形式的乘除运算化简得答案【题目详解】由(1+i)z|3+4i|,得z,z的虚部为故选C【答案点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题10、B【答案解析】根据题意,确定函数的性质,再判断哪一个图像具有这些性质由得是偶函数,所以函数的图象关于轴对称,可知B,D符合;由得是周期

12、为2的周期函数,选项D的图像的最小正周期是4,不符合,选项B的图像的最小正周期是2,符合,故选B11、B【答案解析】利用向量的数量积运算即可算出【题目详解】解:,又在上,故选:【答案点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用12、B【答案解析】利用特称命题的否定分析解答得解.【题目详解】已知命题,那么是.故选:【答案点睛】本题主要考查特称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【答案解析】利用辅助角公式化简可得,由题可分析的最小值等于表示相邻的一个对称中心与一个对称轴的

13、距离为,进而求解即可.【题目详解】由题,因为,且的最小值等于,即相邻的一个对称中心与一个对称轴的距离为,所以,即,所以,故答案为:1【答案点睛】本题考查正弦型函数的对称性的应用,考查三角函数的化简.14、【答案解析】根据函数成立的条件列不等式组,求解即可得定义域.【题目详解】解:要使函数有意义,则 ,即.则定义域为: .故答案为: 【答案点睛】本题主要考查定义域的求解,要熟练掌握张建函数成立的条件.15、【答案解析】作出图形,设点,则、,设点,利用点差法得出,利用斜率公式得出,进而可得出,可得出,由此可求得的值.【题目详解】设点,则、,设点,则,两式相减得,即,即,由斜率公式得,故,因此,.故

14、答案为:.【答案点睛】本题考查椭圆中角的余弦值的求解,涉及了点差法与斜率公式的应用,考查计算能力,属于中等题.16、【答案解析】依据古典概型的计算公式,分别求“任取两个数”和“任取两个数,和是质数”的事件数,计算即可。【题目详解】“任取两个数”的事件数为,“任取两个数,和是质数”的事件有(2,3),(2,5),(2,11)共3个,所以任取两个数,这两个数的和仍是质数的概率是。【答案点睛】本题主要考查古典概型的概率求法。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(1,2);(2)存在,【答案解析】(1)由直线恒过点点及抛物线C上的点到点Q的距离与到准线的距离之和

15、的最小值为,求出抛物线的方程,再由直线与抛物线相切,即可求得切点的坐标;(2)直线与抛物线方程联立,利用根与系数的关系,求得直线PA,PB的斜率,求出斜率之和为定值,即存在实数使得斜率之和为定值.【题目详解】(1)由题意,直线变为2x+1-m(2y+1)=0,所以定点Q的坐标为 抛物线的焦点坐标,由抛物线C上的点到点Q的距离与到其焦点F的距离之和的最小值为,可得,解得或(舍去),故抛物线C的方程为又由消去y得,因为直线与抛物线C相切,所以,解得,此时,所以点P坐标为(1,2)(2)设存在满足条件的实数,点,联立,消去x得,则,依题意,可得,解得m-1或,由(1)知P(1,2),可得,同理可得,

16、所以=,故存在实数=满足条件.【答案点睛】本题主要考查抛物线方程的求解、及直线与圆锥曲线的位置关系的综合应用,解答此类题目,通常联立直线方程与抛物线方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.18、(1);(2)4【答案解析】(1),利用两角差的正弦公式计算即可;(2)设,在中,用正弦定理将用x表示,在中用一次余弦定理即可解决.【题目详解】(1),所以, .(2),设,在中,由正弦定理得,.【答案点睛】本题考查两角差的正弦公式以及正余弦定理解三角形,考查学生的运算求解能力

17、,是一道容易题.19、A=【答案解析】运用矩阵定义列出方程组求解矩阵A【题目详解】由特征值、特征向量定义可知,A即abc同理可得3a+2b=12,3c+2d=8.解得a=2,b=3,c=2,d=1.因此矩阵【答案点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用定义得出方程组即可求出结果,较为简单20、 ()C的方程为,焦点F的坐标为(1,0);()1【答案解析】()根据抛物线定义求出p,即可求C的方程及焦点F的坐标;()设点A(x1,y1),B(x1,y1),由已知得Q(1,1),由题意直线AB斜率存在且不为0,设直线AB的方程为y=k(x+1)1(k0),与抛物线联立可得ky1-4y+

18、4k-8=0,利用韦达定理以及弦长公式,转化求解|MF|NF|的值【题目详解】()由已知得,所以p=1.所以抛物线C的方程为,焦点F的坐标为(1,0);(II)设点A(x1,y1),B(x1,y1),由已知得Q(1,1),由题意直线AB斜率存在且不为0.设直线AB的方程为y=k(x+1)1(k0).由得,则,.因为点A,B在抛物线C上,所以,.因为PFx轴,所以,所以|MF|NF|的值为1.【答案点睛】本题考查抛物线的定义、标准方程及直线与抛物线中的定值问题,常用韦达定理设而不求来求解,本题解题关键是找出弦长与斜率之间的关系进行求解,属于中等题.21、(1);(2)证明详见解析,;(3).【答案解析】(1)根据题意列出关于的等式求解即可.(2)先根据对称性,直线过的定点一定在轴上,再设直线的方程为,联立直线与椭圆的方程, 进而求得的方程,并代入,化简分析即可.(3)先分析过点的直线斜率不存在时的值,再分析存在时,设直线的方程为,联立直线与椭圆的方程,得出韦达定理再代入求解出关于的解析式,再求解范围即可.【题目详解】解:设椭圆的标准方程焦距为,由题意得,由,可得则,所以椭圆的标准方程为;证明:根据对称性,直线过的定点一定在轴上,由题意可知直线的斜率存

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论