2021-2022学年福建省福州鼓楼区高二数学第二学期期末学业质量监测模拟试题含解析_第1页
2021-2022学年福建省福州鼓楼区高二数学第二学期期末学业质量监测模拟试题含解析_第2页
2021-2022学年福建省福州鼓楼区高二数学第二学期期末学业质量监测模拟试题含解析_第3页
2021-2022学年福建省福州鼓楼区高二数学第二学期期末学业质量监测模拟试题含解析_第4页
2021-2022学年福建省福州鼓楼区高二数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若展开式中只有第四项的系数最大,则展开式中有理项的项数为()ABCD2复数是虚数单位的虚部是AB1CDi3甲乙丙丁四人参加数学竞赛,其中只有一位获奖.有人走访了四人,甲说:“乙、丁都

2、未获奖.”乙说:“是甲或丙获奖.”丙说:“是甲获奖.”丁说:“是乙获奖.”四人所说话中只有两位是真话,则获奖的人是( )A甲B乙C丙D丁4如图,函数的图象在点P处的切线方程是,则()A4B3CD5已知向量,则( )ABCD6复数的共轭复数为( )ABCD7从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有 ( )A210种B420种C630种D840种8已知正三棱柱的所有顶点都在球的球面上,且该正三棱柱的底面边长为,体积为,则球的表面积为( )ABCD9从1,2,3,4,5中任取2个不同的数,事件“取到的2个

3、数之和为偶数”,事件“取到的2个数均为偶数”,则( )ABCD10在等差数列中,且,则的最大值等于( )A3B4C6D911已知函数是定义在上的奇函数,当时,,则( )A12B20C28D12小张从家出发去看望生病的同学,他需要先去水果店买水果,然后去花店买花,最后到达医院.相关的地点都标在如图所示的网格纸上,网格线是道路,则小张所走路程最短的走法的种数为( )A72B56C48D40二、填空题:本题共4小题,每小题5分,共20分。13一袋中有大小相同的4个红球和2个白球,给出下列结论:从中任取3球,恰有一个白球的概率是;从中有放回的取球6次,每次任取一球,则取到红球次数的方差为;现从中不放回

4、的取球2次,每次任取1球,则在第一次取到红球的条件下,第二次再次取到红球的概率为;从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为.其中所有正确结论的序号是_14如果一个凸多面体是棱锥,那么这个凸多面体的所有顶点所确定的直线中共有对异面直线,则_15某次试验中,是离散型随机变量,服从分布,该事件恰好发生次的概率是_(用数字作答).16刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况四名学生回答如下: 甲说:“我们四人都没考好” 乙说:“我们四人中有人考的好” 丙说:“乙和丁至少有一人没考好” 丁说:“我没考好”结果,四名学生中有两人说

5、对了,则这四名学生中的_两人说对了三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在中,已知.(1)求角的余弦值;(2)若,边上的中线,求的面积.18(12分)十九大提出,加快水污染防治,建设美丽中国根据环保部门对某河流的每年污水排放量单位:吨的历史统计数据,得到如下频率分布表:污水量 频率 将污水排放量落入各组的频率作为概率,并假设每年该河流的污水排放量相互独立()求在未来3年里,至多1年污水排放量的概率;()该河流的污水排放对沿河的经济影响如下:当时,没有影响;当时,经济损失为10万元;当时,经济损失为60万元为减少损失,现有三种应对方案:方案一:防治350吨的

6、污水排放,每年需要防治费万元;方案二:防治310吨的污水排放,每年需要防治费2万元;方案三:不采取措施试比较上述三种方案,哪种方案好,并请说明理由19(12分)已知正四棱柱的底面边长为2,.(1)求该四棱柱的侧面积与体积;(2)若为线段的中点,求与平面所成角的大小.20(12分)已知分别为内角的对边,且(1)求角A;(2)若,求的面积21(12分)设函数(1)当时,解不等式;(2)若关于的不等式恒成立,求实数的取值范围22(10分)已知函数为定义在上的奇函数,且当时,()求函数的解析式;()求函数在区间上的最小值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中

7、,只有一项是符合题目要求的。1、D【解析】根据最大项系数可得的值,结合二项定理展开式的通项,即可得有理项及有理项的个数.【详解】展开式中只有第四项的系数最大,所以,则展开式通项为,因为,所以当时为有理项,所以有理项共有4项,故选:D.【点睛】本题考查了二项定理展开式系数的性质,二项定理展开式通项的应用,有理项的求法,属于基础题.2、B【解析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,从而可得答案【详解】,复数的虚部是1故选B【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的摸这些重要概念,复数的运算主要考

8、查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3、C【解析】本题利用假设法进行解答.先假设甲获奖,可以发现甲、乙、丙所说的话是真话,不合题意;然后依次假设乙、丙、丁获奖,结合已知,选出正确答案.【详解】解:若是甲获奖,则甲、乙、丙所说的话是真话,不合题意;若是乙获奖,则丁所说的话是真话,不合题意;若是丙获奖,则甲乙所说的话是真话,符合题意;若是丁获奖,则四人所说的话都是假话,不合题意.故选C.【点睛】本题考查了的数学推理论证能力,假设法是经常用到的方法.4、A【解析】由条件可得,【详解】因为函数的图象在点P处的切线方程是所以

9、,所以4故选:A【点睛】本题考查的是导数的几何意义,较简单.5、A【解析】先求出的坐标,再根据向量平行的坐标表示,列出方程,求出.【详解】 由得, 解得,故选A【点睛】本题主要考查向量的加减法运算以及向量平行的坐标表示6、B【解析】分析:由题意结合复数的运算法则整理计算即可求得最终结果.详解:由复数的运算法则可知:,则复数的共轭复数为.本题选择B选项.点睛:本题主要考查复数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.7、B【解析】依题意可得,3位实习教师中可能是一男两女或两男一女若是一男两女,则有种选派方案,若是两男一女,则有种选派方案所以总共有种不同选派方案,故选B8、C

10、【解析】正三棱柱的底面中心的连线的中点就是外接球的球心,求出球的半径即可求出球的表面积【详解】由题意可知,正三棱柱的底面中心的连线的中点就是外接球的球心,底面中心到顶点的距离为,设正三棱柱的高为,由,得,外接球的半径为,外接球的表面积为:故选C【点睛】本题主要考查了正三棱柱的外接球的表面积的求法,找出球的球心是解题的关键,考查空间想象能力与计算能力,是中档题9、B【解析】两个数之和为偶数,则这两个数可能都是偶数或都是奇数,所以。而,所以,故选B10、B【解析】先由等差数列的求和公式,得到,再由基本不等式,即可求出结果.【详解】因为在等差数列中,所以,即,又,所以,当且仅当时,的最大值为4.故选

11、B。【点睛】本题主要考查基本不等式求积的最大值,熟记等差数列的求和公式以及基本不等式即可,属于常考题型.11、A【解析】先计算出的值,然后利用奇函数的性质得出可得出的值。【详解】当时,则,由于函数是定义在上的奇函数,所以,故选:A.【点睛】本题考查利用函数奇偶性求值,求函数值时要注意根据自变量的范围选择合适的解析式,合理利用奇偶性是解本题的关键,考查运算求解能力,属于基础题。12、A【解析】分别找出从家到水果店,水果店到花店,花店到医院的最短路线,分步完成用累乘即可【详解】由题意可得从家到水果店有6种走法,水果店到花店有3种走法,花店到医院有4种走法,因此一共有(种)【点睛】本题考查了排列组合

12、中的乘法原理属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】根据古典概型概率公式结合组合知识可得结论;根据二项分布的方差公式可得结果;根据条件概率进行计算可得到第二次再次取到红球的概率;根据对立事件的概率公式可得结果.【详解】从中任取3个球,恰有一个白球的概率是,故正确;从中有放回的取球次,每次任取一球,取到红球次数,其方差为,故正确;从中不放回的取球次,每次任取一球,则在第一次取到红球后,此时袋中还有个红球个白球,则第二次再次取到红球的概率为,故错误;从中有放回的取球3次,每次任取一球,每次取到红球的概率为,至少有一次取到红球的概率为,故正确,故答案为.【点睛】本题

13、主要考查古典概型概率公式、对立事件及独立事件的概率及分二项分布与条件概率,意在考查综合应用所学知识解决问题的能力,属于中档题.解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要.14、360【解析】先根据异面直线的概念,求得的表达式,由此求得的值.【详解】棱锥共有个顶点,从这些点中任取两个都可以确定一条直线这些直线分成两类:侧棱所在直线与底面内直线.显然所有的侧棱所在直线

14、中,任意两条都不可能成为异面直线,底面内的所有直线中的任意两条也不可能成为异面直线,而任意一条侧棱所在直线,在底面的个顶点中,除去侧棱所在直线用的那个点,还有)个点,那么由这个点构成的直线与该侧棱所在直线都是异面直线,这个点构成的直线有条,故共有对异面直线,则故答案为:【点睛】本小题主要考查异面直线的概念,考查组合数的计算,属于基础题.15、【解析】根据二项分布的概率计算公式,代值计算即可.【详解】根据二项分布的概率计算公式,可得事件发生2次的概率为故答案为:.【点睛】本题考查二项分布的概率计算公式,属基础题.16、乙 ,丙【解析】甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果选丁正

15、确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确。故答案为:乙,丙。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) (2)1【解析】(1)利用三角函数恒等变换的应用化简已知等式可得,根据同角三角函数基本关系式可求的值(2)由已知,两边平方,利用平面向量的运算可求CA的值,根据三角形的面积公式即可求解【详解】(1)因为,所以,即,由三角函数的基本关系式,可得,解得(2)因为,所以,所以,解得所以【点睛】本题主要考查了三角函数恒等变换的应用,平面向量的运算,三角形的面积公式在解三角形中的综合应用,考查了转化思想,属于中档题18、();()采取方案二最好,理由详见解

16、析.【解析】()先求污水排放量的概率0.25,然后再求未来3年里,至多1年污水排放量的概率;()分别求解三种方案的经济损失的平均费用,根据费用多少作出决策.【详解】解:由题得,设在未来3年里,河流的污水排放量的年数为Y,则设事件“在未来3年里,至多有一年污水排放量”为事件A,则在未来3年里,至多1年污水排放量的概率为方案二好,理由如下:由题得,用,分别表示方案一、方案二、方案三的经济损失,则万元的分布列为:262P的分布列为:01060P三种方案中方案二的平均损失最小,采取方案二最好【点睛】本题主要考查随机变量的分布列和期望,数学期望是生活生产中进行决策的主要指标,侧重考查数学建模和数学运算的

17、核心素养.19、(1),(2)【解析】试题分析:根据题意可得:在中,高过作,垂足为,连结,则平面,平面,在中,就是与平面所成的角,又是的中点,是的中位线,在中考点:线面角,棱柱的体积点评:解决的关键是对于几何体体积公式以及空间中线面角的求解的表示,属于基础题20、 (1);(2).【解析】由正弦定理可得,结合,可求,结合范围,可求由已知利用余弦定理可得,解得c的值,根据三角形面积公式即可计算得解【详解】解:由正弦定理可得:,即,由余弦定理,可得:,可得:,解得:,负值舍去,【点睛】本题主要考查了正弦定理,余弦定理,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题21、(1);(2)或【解析】(1)根据题意得到,分,三种情况讨论,即可得出结果;(2)先由关于的不等式恒成立,得到恒成立,结合绝对值不等式的性质,即可求出结果.【详解】(1)当时,即为,当时,解得;当时,可得;当时,解得,综上,原不等式的解集为;(2)关于的不等式恒成立,即为恒成立,由,可得,解得:或.【点睛】本题主要考查含绝对值不等式,通常需要用到分类讨论的思想,灵活运用分类讨论的思想处理,熟记绝对值不等式的性质即可,属于常考题型.22、()()见解析【解析】()利用奇函数的定义即可求函数f(x)的解析式()根据函数的解析式,先画出图象,然后对a(要考虑函数的解析式及单调性)进行分类讨论

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论