




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1用5种不同颜色给图中的A、B、C、D四个区域涂色,规定一个区域只涂一种颜色,相邻的区域颜色不同,共有 种不同的涂色方案A420B180C64D252已知,则下列结论中错误的是( )A BC D3当生物死亡后,其体内原有的碳的含量大约每经过年
2、衰减为原来的一半,这个时间称为“半衰期”.在一次考古挖掘中,考古学家发现一批鱼化石,经检测其碳14含量约为原始含量的,则该生物生存的年代距今约()A万年B万年C万年D万年4若展开式的常数项为60,则值为( )ABCD5独立性检验中,假设:运动员受伤与不做热身运动没有关系.在上述假设成立的情况下,计算得的观测值.下列结论正确的是( )附:1111.151.1111.1152.7163.8416.6357.879A在犯错误的概率不超过1.11的前提下,认为运动员受伤与不做热身运动有关B在犯错误的概率不超过1.11的前提下,认为运动员受伤与不做热身运动无关C在犯错误的概率不超过1.115的前提下,认
3、为运动员受伤与不做热身运动有关D在犯错误的概率不超过1.115的前提下,认为运动员受伤与不做热身运动无关6若函数且在上既是奇函数又是增函数,则的图象是( )ABCD7已知复数满足(其中为虚数单位),则( )A1B2CD8把边长为的正方形沿对角线折起,使得平面平面,形成三棱锥的正视图与俯视图如图所示,则侧视图的面积为()ABCD9一个篮球运动员投篮一次得3分的概率为,得2分的概率为,不得分的概率为(、),已知他投篮一次得分的数学期望为2(不计其它得分情况),则的最大值为ABCD10已知是虚数单位,则复数的共轭复数为( )ABCD11函数的定义域为( )ABCD12已知函数是(,)上的减函数,则a
4、的取值范围是A(0,3)B(0,3C(0,2)D(0,2二、填空题:本题共4小题,每小题5分,共20分。13已知函数f(x)=ex+x3,若f(14用1,2,3,4,5这五个数字,可以组成没有重复数字的三位奇数的个数为_(用数字作答)15某产品发传单的费用x与销售额y的统计数据如表所示:发传单的费用x万元1245销售额y万元10263549根据表可得回归方程,根据此模型预报若要使销售额不少于75万元,则发传单的费用至少为_万元16在正方体中,已知为的中点,则异面直线与所成角的余弦值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)袋子中装有大小形状完全相同的5个小
5、球,其中红球3个白球2个,现每次从中不放回的取出一球,直到取到白球停止(1)求取球次数的分布列;(2)求取球次数的期望和方差18(12分)已知的最小正周期为(1)求的值;(2)在中,角,所对的边分别是为,若,求角的大小以及的取值范围19(12分)2019年春节档有多部优秀电影上映,其中流浪地球是比较火的一部.某影评网站统计了100名观众对流浪地球的评分情况,得到如下表格:评价等级分数02021404160618081100人数5212675 (1)根据以上评分情况,试估计观众对流浪地球的评价在四星以上(包括四星)的频率;(2)以表中各评价等级对应的频率作为各评价等级对应的概率,假设每个观众的评
6、分结果相互独立.(i)若从全国所有观众中随机选取3名,求恰有2名评价为五星1名评价为一星的概率;(ii)若从全国所有观众中随机选取16名,记评价为五星的人数为X,求X的方差.20(12分)已知函数与的图象都过点,且在点处有公共切线.(1)求的表达式;(2)设,求的极值.21(12分)已知,且是第三象限角,求,.22(10分)已知,函数.(1)若,求的值;(2)若,求的单调递增区间.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行,区域A有5种涂法,B有4
7、种涂法,C有3种,D有3种涂法,根据乘法原理可得结论详解:由题意,由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行,区域A有5种涂法,B有4种涂法,C有3种,D有3种涂法共有5433=180种不同的涂色方案故答案为:B.点睛:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等;(3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组
8、合问题,然后逐步解决2、C【解析】试题分析:,当时,单调递减,同理当时,单调递增,显然不等式有正数解(如,(当然可以证明时,),即存在,使,因此C错误考点:存在性量词与全称量词,导数与函数的最值、函数的单调性3、C【解析】根据实际问题,可抽象出,按对数运算求解.【详解】设该生物生存的年代距今是第个5730年,到今天需满足,解得:,万年.故选C.【点睛】本题考查了指数和对数运算的实际问题,考查了转化与化归和计算能力.4、D【解析】由二项式展开式的通项公式写出第项,求出常数项的系数,列方程即可求解.【详解】因为展开式的通项为,令,则,所以常数项为,即,所以.故选D【点睛】本题主要考查二项式定理的应
9、用,熟记二项展开式的通项即可求解,属于基础题型.5、A【解析】根据临界值表找到犯错误的概率,即可对各选项结论的正误进行判断【详解】,因此,在犯错误的概率不超过的前提下,认为运动员受伤与不做热身运动有关,故选A【点睛】本题考查独立性检验的基本思想,解题的关键就是利用临界值表找出犯错误的概率,考查分析能力,属于基础题6、D【解析】根据题意先得到,判断其单调性,进而可求出结果.【详解】因为函数且在上是奇函数,所以所以,又因为函数在上是增函数,所以,所以,它的图象可以看作是由函数向左平移一个单位得到,故选D.【点睛】本题主要考查函数的奇偶性与单调性以及函数图象变换,熟记函数性质即可,属于常考题型.7、
10、D【解析】先求出复数z,然后根据公式,求出复数的模即可.【详解】,.故选D.【点睛】本题主要考查复数的模计算,较基础.8、C【解析】取BD的中点E,连结CE,AE,平面ABD平面CBD,CEAE,三角形直角CEA是三棱锥的侧视图,BD=,CE=AE=,CEA的面积S=,故选C.9、D【解析】3a+2b+0c=2即3a+2b=2,所以,因此10、A【解析】先由复数的除法,化简z,再由共轭复数的概念,即可得出结果.【详解】因为,所以.故选A【点睛】本题主要考查复数的运算,以共轭复数的概念,熟记运算法则与概念即可,属于基础题型.11、B【解析】利用二次根式的性质和分式的分母不为零求出函数的定义域即可
11、.【详解】由题意知,解得且,所以原函数的定义域为.故选:B【点睛】本题考查函数定义域的求解;考查二次根式的性质和分式的分母不为零;考查运算求解能力;属于基础题.12、D【解析】由为上的减函数,根据和时,均单调递减,且,即可求解.【详解】因为函数为上的减函数,所以当时,递减,即,当时,递减,即,且,解得,综上可知实数的取值范围是,故选D.【点睛】本题主要靠考查了分段函数的单调性及其应用,其中熟练掌握分段的基本性质,列出相应的不等式关系式是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、(1,2) 【解析】因为f(x)=ex+3x2
12、0,所以函数f(x)为增函数,所以不等式14、【解析】通过先分析个位数字的可能,再排列十位和千位即得答案.【详解】根据题意,个位数字是1,3,5共有3种可能,由于还剩下4个数字,排列两个位置故可以组成没有重复数字的三位奇数的个数为,故答案为36.【点睛】本题主要考查排列组合相关知识,难度不大.15、1【解析】计算样本中心点,根据线性回归方程恒过样本中心点,列出方程,求解即可得到,进而构造不等式,可得答案【详解】由已知可得:,代入,得,令解得:,故答案为:1【点睛】本题考查的知识点是线性回归方程,难度不大,属于基础题在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地
13、反映x与Y之间的关系,这条直线过样本中心点线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的, 线性回归方程得到的预测值是预测变量的估计值,不是准确值.16、【解析】取中点,连接,根据四边形为平行四边形可得,从而可知所求角为;在中,利用余弦定理可求得,即为所求余弦值.【详解】取中点,连接分别为中点 四边形为平行四边形 与所成角即为与所成角,即设正方体棱长为,则,即异面直线与所成角的余弦值为:本题正确结果:【点睛】本题考查异面直线所成角的求解,关键是能够通过平行关系将异面直线平移为相交直线,转变为相交直线所成角,从而将所求角放入三角形中来求解,属于常考题型.三、解答题
14、:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2),【解析】根据相互独立事件概率求出离散型随机变量的分布列、期望和方差.【详解】解:(1)由题设知,则的分布列为1234(2)则取球次数的期望,的方差.【点睛】本题考查离散型随机变量的分布列、期望和方差,属于中档题.18、 (1) ;(2) ,.【解析】 试题分析:(1) 根据三角恒等变换的公式,得,根据周期,得,即,即可求解的值;(2)根据正弦定理和三角恒等变换的公式,化简,可得,可得,进而求得,即可求解的取值范围.试题解析:(1) ,由函数的最小正周期为,即,得, (2),由正弦定理可得 , ,19、(1)(2)(i
15、) (ii)【解析】(1)从表格中找出评价为四星和五星的人数之和,再除以总数可得出所求频率;(2)(i)记事件恰有2名评价为五星1名评价为一星,然后利用独立重复试验的概率可求出事件的概率;(ii)由题意得出,然后利用二项分布的方差公式可得出的值。【详解】(1)由给出的数据可得,评价为四星的人数为6,评价为五星的人数是75,故评价在四星以上(包括四星)的人数为, 故可估计观众对流浪地球的评价在四星以上(包括四星)的频率为0.81(或);(2)(i)记“恰有2名评价为五星1名评价为一星”为事件A,则;(ii)由题可知,故.【点睛】本题第(1)考查频率的计算,第(2)文考查独立重复试验的概率以及二项
16、分布方差的计算,解题前要弄清事件的基本类型以及随机变量所服从的分布列类型,再利用相关公式求解,考查计算能力,属于中等题。20、(1),;(2),【解析】分析:(1)把点代入,求出的值,求出和,再求出的值;(2),所以;或,判断或两边导函数的图象,从而可得结果.详解:(1)的图象都过点,所以;即,由可得;所以;又因为的图象都过点,所以 ,则综上,;(2),所以;或;所以,.点睛:本题主要考查导数的几何意义,利用导数判断函数的单调性以及函数的极值,属于中档题.求函数极值的步骤:(1) 确定函数的定义域;(2) 求导数;(3) 解方程求出函数定义域内的所有根;(4) 列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纸容器印刷与装饰技术考核试卷
- 贵金属精炼中的贵金属矿床资源可持续发展战略规划考核试卷
- 运动防护用具材料研发进展考核试卷
- 选矿实验方法与技巧考核试卷
- 水电工程信息系统安全与防护措施考核试卷
- 草原生态保护与利用考核试卷
- 小儿饮食护理
- 海外留学申请文书专业撰写与推广服务协议
- 海外复杂地质环境无人机租赁及地质成果解析协议
- 金融存管安全风险评估及应对协议
- YS/T 22-2010锑酸钠
- GB/T 4490-2021织物芯输送带宽度和长度
- GB/T 3299-2011日用陶瓷器吸水率测定方法
- GB/T 18867-2014电子工业用气体六氟化硫
- FZ/T 51011-2014纤维级聚己二酰己二胺切片
- 第15课《驿路梨花》教学实录
- 思想道德修养与法律基础(完整版PPT)
- 动物英语俚语课件
- 幼儿园课件-神奇的中草药
- 金坛区苏科版六年级心理健康教育第18课《中学遐想》课件(定稿)
- 小学生民法典主题班会PPT
评论
0/150
提交评论