




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1一张储蓄卡的密码共有位数字,每位数字都可以是中的任意一个.某人在银行自动取款机上取钱时,忘记
2、了密码的最后一位数字,任意按最后一位数字,则不超过次就按对的概率为( )ABCD2对于两个平面和两条直线,下列命题中真命题是( )A若,则B若,则C若,则D若,则3观察下面频率等高条形图,其中两个分类变量x,y之间关系最强的是()ABCD4干支纪年法是中国历法上自古以来就一直使用的纪年方法,主要方式是由十天干(甲、乙、丙、丁、戊、己、废、辛、壬、朵)和十二地支(子、丑、卯、辰、已、午、未、中、百、戊、)按顺序配对,周而复始,循环记录如:1984年是甲子年,1985年是乙丑年,1994年是甲戌年,则数学王子高斯出生的1777年是干支纪年法中的()A丁申年B丙寅年C丁酉年D戊辰年5已知随机变量服从
3、正态分布,若,则等于( )A B C D6在中,则( )ABCD7函数的最大值为( )AB1C4033D8设等差数列的公差为d,若数列为递减数列,则( )ABCD9定义在上的偶函数满足,且在上单调递增,设,则,大小关系是( )ABCD10在中,点满足,则等于( )A10B9C8D711已知=(2,3),=(3,t),=1,则=A-3B-2C2D312且,可进行如下“分解”:若的“分解”中有一个数是2019,则( )A44B45C46D47二、填空题:本题共4小题,每小题5分,共20分。13已知点在二面角的棱上,点在半平面 内,且,若对于半平面内异于的任意一点,都有,则二面角大小的取值的集合为_
4、.14已知复数z满足(1+2i)(1+z)7+16i,则z的共轭复数_15已知、的取值如表所示:01342.24.34.86.7从散点图分析,与线性相关,且,则_16已知函数,若,则实数的取值范围是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在极坐标系中,曲线的极坐标方程是,以极点为原点,极轴为轴正半轴(两坐标系取相同的单位长度)的直角坐标系中,曲线的参数方程为: (为参数).(1)求曲线的直角坐标方程与曲线的普通方程;(2)将曲线经过伸缩变换后得到曲线,若, 分别是曲线和曲线上的动点,求的最小值.18(12分)已知曲线的参数方程为(为参数),以原点为极点,以
5、轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)射线与曲线交点为、两点,射线与曲线交于点,求的最大值19(12分)已知函数.(1)求函数的单调区间;(2)若,求证: .(为自然对数的底数)20(12分)求适合下列条件的圆锥曲线的标准方程(1)求与椭圆有公共焦点,且离心率的双曲线的方程(2)求顶点在原点,准线方程为的抛物线的方程21(12分)红铃虫是棉花的主要害虫之一,能对农作物造成严重伤害,每只红铃虫的平均产卵数和平均温度有关,现收集了以往某地的7组数据,得到下面的散点图及一些统计量的值.平均温度21232527293133平均产卵数/个7
6、112124661153251.92.43.03.24.24.75.8(1)根据散点图判断,与(其中为自然对数的底数)哪一个更适宜作为平均产卵数关于平均温度的回归方程类型?(给出判断即可,不必说明理由)并由判断结果及表中数据,求出关于的回归方程.(计算结果精确到0.01)(2)根据以往统计,该地每年平均温度达到以上时红铃虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到以上的概率为.记该地今后5年中,恰好需要3次人工防治的概率为,求的最大值,并求出相应的概率.附:回归方程中,.参考数据52151771371781.33.622(10分)已知集合,其中。表示集合A中
7、任意两个不同元素的和的不同值的个数。(1)若,分别求和的值;(2)若集合,求的值,并说明理由;(3)集合 中有2019个元素,求的最小值,并说明理由。参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用互斥事件概率加法公式和相互独立事件概率乘法公式直接求解,即可求得答案.【详解】设第次按对密码为事件第一次按对第一次按错,第二次按对第一次按错,第二次按错,第三次按对事件,事件,事件是互斥,任意按最后一位数字,则不超过次就按对的概率由概率的加法公式得:故选:C【点睛】本题考查概率的求法,考查互斥事件概率加法公式和相互独立事
8、件概率乘法公式等基础知识,考查运算求解能力,是基础题2、D【解析】根据线面平行垂直的位置关系判断【详解】A中可能在内,A错;B中也可能在内,B错;与可能平行,C错;,则或,若,则由得,若,则内有直线,而易知,从而,D正确故选D【点睛】本题考查线面平行与垂直的关系,在说明一个命题是错误时可举一反例说明命题是正确时必须证明3、D【解析】在频率等高条形图中,与相差很大时,我们认为两个分类变量有关系,即可得出结论【详解】在频率等高条形图中,与相差很大时,我们认为两个分类变量有关系,四个选项中,即等高的条形图中x1,x2所占比例相差越大,则分类变量x,y关系越强,故选D【点睛】本题考查独立性检验内容,使
9、用频率等高条形图,可以粗略的判断两个分类变量是否有关系,是基础题4、C【解析】天干是以10为公差的等差数列,地支是以12为公差的等差数列,按照这个规律进行推理,即可得到结果【详解】由题意,天干是以10为公差的等差数列,地支是以12为公差的等差数列,1994年是甲戌年,则1777的天干为丁,地支为酉,故选:C【点睛】本题主要考查了等差数列的定义及等差数列的性质的应用,其中解答中认真审题,合理利用等差数列的定义,以及等差数列的性质求解是解答的关键,着重考查了推理与运算能力,属于基础题5、B【解析】根据正态分布密度曲线的对称性可知,若,函数的对称轴是 ,所以,故选B.6、D【解析】利用余弦定理计算出
10、的值,于此可得出的值【详解】,由余弦定理得,因此,故选D【点睛】本题考查利用余弦定理求角,解题时应该根据式子的结构确定对象角,考查计算能力,属于基础题7、C【解析】 ,选C.8、C【解析】试题分析:因为是等差数列,则,又由于为递减数列,所以,故选C.考点:1.等差数列的概念;2.递减数列.9、C【解析】试题分析:可知函数周期为,所以在上单调递增,则在单调递减,故有.选C考点:函数的奇偶性与单调性【详解】请在此输入详解!10、D【解析】利用已知条件,表示出向量 ,然后求解向量的数量积【详解】在中,点满足,可得 则=【点睛】本题考查了向量的数量积运算,关键是利用基向量表示所求向量11、C【解析】根
11、据向量三角形法则求出t,再求出向量的数量积.【详解】由,得,则,故选C【点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大12、B【解析】探寻规律,利用等差数列求和进行判断【详解】由题意得底数是的数分裂成个奇数,底数是的数分裂成个奇数,底数是的数分裂成个奇数,则底数是数分裂成个奇数,则共有个奇数,是从开始的第个奇数,第个奇数是底数为的数的立方分裂的奇数的其中一个,即,故选【点睛】本题考查了数字的变化,找出其中的规律,运用等差数列求出奇数的个数,然后进行匹配,最终还是考查了数列的相关知识。二、填空题:本题共4小题,每小题5分,共20分。13、【解析】画出图形,利用斜线与平面内直线
12、所成的角中,斜线与它的射影所成的角是最小的,判断二面角的大小即可.【详解】如下图所示,过点在平面内作,垂直为点,点在二面角的棱上,点在平面内,且,若对于平面内异于点的任意一点,都有.因为斜线与平面内直线所成角中,斜线与它的射影所成的角是最小的,即是直线与平面所成的角,平面,平面,所以,平面平面,所以,二面角的大小是.故答案为:.【点睛】本题考查二面角平面角的求解,以及直线与平面所成角的定义,考查转化与化归思想和空间想象能力,属于中等题.14、46i【解析】根据复数的乘除法运算法则求得复数,再根据共轭复数的概念可得答案.【详解】由(1+2i)(1+z)7+16i,得,所以.故答案为:.【点睛】本
13、题考查了复数的乘除法运算法则,考查了共轭复数的概念,属于基础题.15、【解析】根据数据表求解出,代入回归直线,求得的值.【详解】根据表中数据得:,又由回归方程知回归方程的斜率为截距本题正确结果:【点睛】本题考查利用回归直线求实际数据,关键在于明确回归直线恒过,从而可构造出关于的方程.16、【解析】对的范围分类讨论函数的单调性,再利用可判断函数在上递增,利用函数的单调性将转化成:,解得:,问题得解.【详解】当时,它在上递增,当时,它在上递增,又所以在上递增,所以可化为:,解得:.所以实数的取值范围是故填:【点睛】本题主要考查了分类思想及函数单调性的应用,还考查了转化能力及计算能力,属于中档题。三
14、、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) (2) 【解析】(1)的极坐标方程是,整理得,的直角坐标方程为.曲线:,故的普通方程为.(2)将曲线经过伸缩变换后得到曲线的方程为,则曲线的参数方程为(为参数).设,则点到曲线的距离为 .当时,有最小值,所以的最小值为.18、(1),;(2)【解析】(1)先将曲线的参数方程化为普通方程,再由转化为极坐标方程,将曲线的极坐标利用两角差的正弦公式展开,由转化为直角坐标方程;(2)点和点的极坐标分别为,将点、的极坐标分别代入曲线、的极坐标方程,得出、的表达式,再利用辅助角公式计算出的最大值。【详解】(1)由曲线的参数方程(为
15、参数)得:,即曲线的普通方程为,又, 曲线的极坐标方程为,曲线的极坐标方程可化为, 故曲线的直角方程为;(2)由已知,设点和点的极坐标分别为,其中则,于是 其中,由于,当时,的最大值是【点睛】本题考查参数方程、极坐标方程与普通方程之间的互化,以及利用极坐标方程求解最值问题,解题时要充分理解极坐标方程所适用的基本条件,熟悉极坐标方程求解的基本步骤,考查计算能力,属于中等题。19、(1)当时, 只有增区间为,当时, 的增区间为,减区间为;(2)证明见解析.【解析】分析:求出函数的导数,通过讨论的范围,求出函数的单调区间问题等价于, 令,根据函数的单调性即可判断出结果详解:(1),当时, ,函数在单
16、调递增,当时, 时, 时,在单调递增,在单调递减.综上所述,当时, 只有增区间为.当时, 的增区间为,减区间为.(2)等价于. 令,而在单调递增,且, .令,即, ,则时, 时,故在单调递减,在单调递增,所以 .即. 点睛:本题考查了导数的运用,利用导数求出含有参量的函数单调区间,在证明不等式成立时需要进行转化,得到新函数,然后再求导,这里需要注意当极值点求不出时,可以选择代入计算化简。20、(1)(2)【解析】(1)根据题意双曲线方程可设为,可得关于的方程组,进而求出双曲线的方程(2)根据抛物线的顶点在原点,准线方程为,可设抛物线方程为,从而可求得抛物线的方程【详解】(1)解:依题意,双曲线
17、的焦点坐标是故双曲线的方程可设为又双曲线的离心率解得双曲线的方程为(2)解:抛物线的顶点在原点,准线方程为可设抛物线方程为抛物线方程为【点睛】本题考查圆锥曲线的综合,主要考查椭圆、双曲线、抛物线的相关性质,是基础题.解题时需要认真审题.21、(1);(2)当时,.【解析】(1)根据散点图判断更适宜作为关于的回归方程类型;对两边取自然对数,求出回归方程,再化为y关于x的回归方程;(2)由对其求对数,利用导数判断函数单调性,求出函数的最值以及对应的值.【详解】解:(1)由散点图可以判断,适宜作为卵数关于温度的回归方程类型.对两边取自然对数,得,由数据得,所以,所以关于的线性回归方程为,关于的回归方程为.(2)由得,因为,令得,解得;所以在上单调递减,在上单调递增,所以有唯一的极大值为,也是最大值;所以当时,.【点睛】本题考查了线性回归方程的求法与应用问题,也考查了概率的计算与应用问题,属于中档题.22、 (1) 5,10 (2)见解析;(3) 最小值是4035【解析】(1)根据题意进行元素相加即可得出和的值;(2) 因为共有项,所以由集合,任取,由此能出的值;(3)不妨设,可得,故中至少有4035个不同的数,即由此能出的最小值【详解】(1)由246,268,2810,4610,48
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度综合性劳动合同范本
- 肇庆市实验中学高中历史二:第三单元各个经济体制的创新和调整测验教案
- 2025黑龙江省旅游投资集团有限公司事业部及共享中心招聘15人笔试参考题库附带答案详解
- 2025企业寒假实习生合同协议书
- 2025年中国膜式高压氧气压缩机市场调查研究报告
- 2025【园林景观工程合同范本】质量保修金条款
- 变态反应科专业知识考核试卷
- 电子真空器件的微波光子学研究考核试卷
- 灯具制造过程中的节能减排措施考核试卷
- 国企首都机场集团有限公司内蒙古地区招聘笔试参考题库附带答案详解
- 班主任工作坊活动方案
- FZ/T 52019-2011莱赛尔短纤维
- 国开电大 管理概论 形考任务一(画组织结构图)
- 三自由度并联机器人结构设计
- 仓储装卸服务合同
- 式双钩五点安全带培训课件
- 名片设计 课件
- 钳工实操评分表(凹凸配合)
- 社会组织管理概论全套ppt课件(完整版)
- 陕西省城市规划管理技术规定(定稿)
- 部编版七年级下册历史复习提纲(重点考察知识点)
评论
0/150
提交评论