




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、本文格式为Word版,下载可任意编辑 前三届全国大学生高等数学竞赛真题及答案(大纲)非数学类 . . 页脚中国大学生数学竞赛竞赛大纲 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,鼓舞大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛的目的是:鼓舞大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的容 “中国大学生数学竞赛分为数
2、学专业类竞赛题和非数学专业类竞赛题。 中国大学生数学竞赛(非数学专业类)竞赛容为大学本科理工科专业高等数学课程的教学容,具体容如下: 一、函数、极限、连续 1函数的概念及表示法、简单应用问题的函数关系的建立. 2函数的性质:有界性、单调性、周期性和奇偶性. 3复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数. 4数列极限与函数极限的定义及其性质、函数的左极限与右极限. 5无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的对比. 6极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限. 7函数的连续性(含左连续与右连续)、函数休止点的类型. 8连续函数的性质和
3、初等函数的连续性. 9闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理). 二、一元函数微分学 1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线. 2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性. 3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法. 4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数. 5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理. 6. 洛必达(LHospital)法则与求未定式极限. 7. 函数的极值、函数单调性、函数图形的凹凸性
4、、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘. 8. 函数最大值和最小值及其简单应用. 9. 弧微分、曲率、曲率半径. 三、一元函数积分学 1.原函数和不定积分的概念. 2.不定积分的基本性质、基本积分公式. 3.定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、 . . 页脚 牛顿-莱布尼茨(Newton-Leibniz)公式. 4. 不定积分和定积分的换元积分法与分部积分法. 5. 有理函数、三角函数的有理式和简单无理函数的积分. 6. 广义积分. 7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行 截面面积为已知的立体体积、功、
5、引力、压力及函数的平均值 四.常微分方程 1. 常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等. 2. 变量可分开的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli) 方程、全微分方程. 3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程:),()n (x f y = ),(y x f y = ),(y y f y =. 4. 线性微分方程解的性质及解的结构定理. 5. 二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程. 6. 简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、 余弦函数,以及它们的和与积
6、 7. 欧拉(Euler)方程. 8. 微分方程的简单应用 五、向量代数和空间解析几何 1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积. 2. 两向量垂直、平行的条件、两向量的夹角. 3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦. 4. 曲面方程和空间曲线方程的概念、平面方程、直线方程. 5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和 点到直线的距离. 6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次 曲面方程及其图形. 7. 空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程. 六、
7、多元函数微分学 1. 多元函数的概念、二元函数的几何意义. 2. 二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质. 3. 多元函数偏导数和全微分、全微分存在的必要条件和充分条件. 4. 多元复合函数、隐函数的求导法. 5. 二阶偏导数、方向导数和梯度. 6. 空间曲线的切线和法平面、曲面的切平面和法线. 7. 二元函数的二阶泰勒公式. 8. 多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简 单应用. 七、多元函数积分学 1. 二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积 分的计算(直角坐标、柱面坐标、球面坐标). . . 页脚2.
8、两类曲线积分的概念、性质及计算、两类曲线积分的关系. 3.格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函 数. 4.两类曲面积分的概念、性质及计算、两类曲面积分的关系. 5.高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算. 6.重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面 积、弧长、质量、质心、转动惯量、引力、功及流量等) 八、无穷级数 1.常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件. 2.几何级数与p级数及其收敛性、正项级数收敛性的判别法、交织级数与莱布尼茨 (Leibniz)
9、判别法. 3.任意项级数的十足收敛与条件收敛. 4.函数项级数的收敛域与和函数的概念. 5.幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数. 6.幂级数在其收敛区间的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂 级数的和函数的求法. 7.初等函数的幂级数展开式. 8.函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在-l, l上的傅里叶级数、函数在0,l上的正弦级数和余弦级数 . . 页脚 前三届高数竞赛预赛试题(非数学类) (加入高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书 及相关题目,主要是一些各大高校的试题
10、。) 2022年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每题5分,共20分) 1计算=-+?y x y x x y y x D d d 1) 1ln()(_,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 解: 令v x u y x =+,,则v u y v x -=,,v u v u y x d d d d 11 10 det d d =? ? ? ?-=, v u u v u u u y x y x x y y x D D d d 1ln ln d d 1) 1ln()(?-= -+ ?=10 2 1 00 0d 1)ln (1ln d )d ln 1d 1ln (
11、u u u u u u u u u u v v u u v u u u u u ? -=1 2 d 1u u u (*) 令u t -=1,则21t u -= dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-, ?+-=0 1 42d )21(2(*)t t t ? +-=10 42d )21(2t t t 15165132 21 53= ?+-=t t t 2设)(x f 是连续函数,且满足? - =20 22d )(3)(x x f x x f , 则=)(x f _. 解: 令? = 20 d )(x x f A ,则23)(2-=
12、A x x f , A A x A x A 24)2(28d )23(20 2-=+-=-= ? , 解得34= A 。因此3 10 3)(2-=x x f 。 3曲面22 22 -+=y x z 平行平面022=-+z y x 的切平面方程是_. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面22 22 -+=y x z 在 . . 页脚 ),(00y x 处的法向量为)1),(),(0000-y x z y x z y x ,故 )1),(),(0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知 000000
13、2),(2,),(2y y x z x y x z y x =, 即1,200=y x ,又5)1,2(),(00=z y x z ,于是曲面022=-+z y x 在 ),(,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=+-z y x ,即曲面 22 22 -+=y x z 平行平面 022=-+z y x 的切平面方程是0122=-+z y x 。 4设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1f ,则=22d d x y _. 解: 方程29ln )(y y f e xe =的两边对x 求导,得 29ln )()()(y e e y y f x e y y f y f =+ 因)(29ln y f y xe e =,故y y y f x =+)(1,即)(1(1y f x y -=,因此 2 222)(1)()(1(1d d y f x y y f y f x y x y -+-= 322 232) (1)(1)()(1(1)(1)(y f x y f y f y f x y f x y f -=-= 二、(5分)求极
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025租房合同协议样本参考
- 2025租赁合同撤销协议书
- 2025股票交易委托合同范本模板
- 2025微博平台委托开发合同
- 2025中学新风系统安装施工合同书
- 2025租房合同简化版
- 2025租房合同简化版样本
- 2025标准化的煤炭购销合同范本
- 2025年知识产权合同纠纷的解决方法
- 《养殖用药及安全》课件
- 定额〔2025〕1号文-关于发布2018版电力建设工程概预算定额2024年度价格水平调整的通知
- 【MOOC】机械原理-西北工业大学 中国大学慕课MOOC答案
- 关于新能源汽车的论文10000字
- 停车场建设工程监理规划
- 中型水力发电厂电气部分初步设计
- 2023山西焦煤集团有限责任公司井下操作工招聘2000人笔试模拟试题及答案解析
- 分红险、万能险销售资质考试真题模拟汇编(共763题)
- 鱼台工程运河杯汇报材料
- GB/T 16895.25-2022低压电气装置第7-711部分:特殊装置或场所的要求展览、展示及展区
- 《运营管理》案例库
- 煤矿安全监控系统设备管理报废制度
评论
0/150
提交评论