2023学年湖南省长沙市西雅中学数学九年级第一学期期末经典模拟试题含解析_第1页
2023学年湖南省长沙市西雅中学数学九年级第一学期期末经典模拟试题含解析_第2页
2023学年湖南省长沙市西雅中学数学九年级第一学期期末经典模拟试题含解析_第3页
2023学年湖南省长沙市西雅中学数学九年级第一学期期末经典模拟试题含解析_第4页
2023学年湖南省长沙市西雅中学数学九年级第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1如图,在平面直角坐标系xOy中,正方形ABCD的顶点D在y轴上且A(3,0),B(2,b),则正方形ABCD的面积是( )A20B16C34D252的倒数是( )A

2、1B2CD3如图所示,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,ABC90,CAx轴于点A,点C在函数y(x0)的图象上,若OA1,则k的值为()A4B2C2D4在4张相同的小纸条上分别写上数字2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为()ABCD5已知圆心角为120的扇形的弧长为6,该扇形的面积为()ABCD6已知,则下列各式不成立的是( )ABCD7抛物线的顶点坐标为ABCD8一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同,搅

3、匀后任意摸出一个球,是白球的概率为( )ABCD9如图,点O是ABC的内切圆的圆心,若A80,则BOC为( )A100B130C50D6510关于的一元二次方程根的情况是( )A有两个不相等的实数根B有两个相等的实数根C没有实数根D根的情况无法判断二、填空题(每小题3分,共24分)11一定质量的二氧化碳,其体积V(m3)是密度(kg/m3)的反比例函数,请你根据图中的已知条件,写出反比例函数的关系式,当V=1.9m3时,=_12一件商品的标价为108元,经过两次降价后的销售价是72元,求平均每次降价的百分率若设平均每次降价的百分率为x,则可列方程_13如图,ABC的外心的坐标是_.14如图,点

4、的坐标分别为,若将线段平移至,则的值为_15计算:_16已知一段公路的坡度为1:20,沿着这条公路前进,若上升的高度为2m,则前进了_米17一个反比例函数的图像过点,则这个反比例函数的表达式为_18在长8cm,宽6cm的矩形中,截去一个矩形,使留下的矩形与原矩形相似,那么留下的矩形面积是_cm2三、解答题(共66分)19(10分)已知在ABC中,AB30(1)尺规作图:在线段AB上找一点O,以O为圆心作圆,使O经过A,C两点;(2)在(1)中所作的图中,求证:BC是O的切线20(6分)如图,已知正方形ABCD中,BE平分DBC且交CD边于点E,将BCE绕点C顺时针旋转到DCF的位置,并延长BE

5、交DF于点G(1)求证:BDGDEG;(2)若EGBG=4,求BE的长21(6分)直线与轴交于点,与轴交于点,抛物线经过两点.(1)求这个二次函数的表达式;(2)若是直线上方抛物线上一点;当的面积最大时,求点的坐标;在的条件下,点关于抛物线对称轴的对称点为,在直线上是否存在点,使得直线与直线的夹角是的两倍,若存在,直接写出点的坐标,若不存在,请说明理由.22(8分)如图,在中,点在边上,经过点和点且与边相交于点(1)求证:是的切线;(2)若,求的半径23(8分)为了了解班级学生数学课前预习的具体情况,郑老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:

6、一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)C类女生有 名,D类男生有 名,将上面条形统计图补充完整;(2)扇形统计图中“课前预习不达标”对应的圆心角度数是 ;(3)为了共同进步,郑老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率,24(8分)如图,港口位于港口的南偏西方向,灯塔恰好在的中点处,一艘海轮位于港口的正南方向,港口的正东方向处,它沿正北方向航行到达处,侧得灯塔在北偏西方向上.求此时海轮距离港口有多远?25(10分)如果三角形有一边上的中线恰好

7、等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”(1)如图,在RtABC中,C90,ACBC,若RtABC是“匀称三角形”请判断“匀称中线”是哪条边上的中线,求BC:AC:AB的值(2)如图,ABC是O的内接三角形,ABAC,BAC45,SABC2,将ABC绕点A逆时针旋转45得到ADE,点B的对应点为D,AD与O交于点M,若ACD是“匀称三角形”,求CD的长,并判断CM是否为ACD的“匀称中线”26(10分)先化简,再求值:,其中x满足x2x1=1参考答案一、选择题(每小题3分,共30分)1、C【分析】作BMx轴于M只要证明DAOABM,推出OABM,AMOD,由A(3

8、,0),B(2,b),推出OA3,OM2,推出ODAM5,再利用勾股定理求出AD即可解决问题【详解】解:作轴于四边形是正方形,在和中,正方形的面积,故选:【点睛】本题考查正方形的性质、坐标与图形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线构造全等三角形解决问题,属于中考常考题型2、B【分析】根据特殊角的三角函数值即可求解【详解】=故的倒数是2,故选B【点睛】此题主要考查倒数,解题的关键是熟知特殊角的三角函数值3、C【分析】作BDAC于D,如图,先利用等腰直角三角形的性质得到AC1BD,再证得四边形OADB是矩形,利用ACx轴得到C(1,1),然后根据反比例函数

9、图象上点的坐标特征计算k的值【详解】解:作BDAC于D,如图,ABC为等腰直角三角形,BD是AC的中线,AC1BD,CAx轴于点A,ACx轴,BDAC,AOB90,四边形OADB是矩形,BDOA1,AC1,C(1,1),把C(1,1)代入y得k111故选:C【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xyk也考查了等腰直角三角形的性质4、C【分析】画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可【详解】根据题意画图如下:共有12种等情况数,其

10、中2次抽出的签上的数字的和为正数的有6种,则2次抽出的签上的数字的和为正数的概率为;故选:C【点睛】本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数,5、B【分析】设扇形的半径为r利用弧长公式构建方程求出r,再利用扇形的面积公式计算即可【详解】解:设扇形的半径为r由题意:=6,r=9,S扇形=27,故选B【点睛】本题考查扇形的弧长公式,面积公式等知识,解题的关键是学会构建方程解决问题,属于中考常考题型6、D【分析】利用比例的性质进行逐一变形,比较是否与题目一致,即可得出答案.【详解】A:因为所以ab=cd,故

11、A正确;B:因为所以ab=cd,故B正确;C:因为所以(a+c)b=(d+b)c,化简得ab =cd,故选项C正确;D:因为所以(a+1)(b+1)=(d+1)(c+1),化简得ab+a+b=cd+d+c,故选项D错误;故答案选择D.【点睛】本题考查的是比例的性质,难度不大,需要熟练掌握相关基础知识,重点需要熟练掌握去括号法则.7、B【分析】利用顶点公式 ,进行计算【详解】 顶点坐标为故选B.【点睛】本题考查二次函数的性质,熟练运用抛物线顶点的公式是解题关键.8、A【分析】根据概率公式解答即可.【详解】袋子里装有2个红球、3个黄球和5个白球共10个球,从中摸出一个球是白球的概率为:故选A.【点

12、睛】本题考查了随机事件概率的求法如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A) 9、B【分析】根据三角形的内切圆得出OBC=ABC,OCB=ACB,根据三角形的内角和定理求出ABC+ACB的度数,进一步求出OBC+OCB的度数,根据三角形的内角和定理求出即可【详解】点O是ABC的内切圆的圆心,OBC=ABC,OCB=ACBA=80,ABC+ACB=180A=100,OBC+OCB=(ABC+ACB)=50,BOC=180(OBC+OCB)=18050=130故选B【点睛】本题主要考查对三角形的内角和定理,三角形的内切圆与内心等知识点的理解和掌

13、握,能求出OBC+OCB的度数是解答此题的关键10、A【解析】若0,则方程有两个不等式实数根,若=0,则方程有两个相等的实数根,若0,则方程没有实数根.求出与零的大小,结果就出来了.【详解】解:= ,方程有两个不相等的实数根【点睛】本题主要考查根的判别式,掌握一元二次方程的根的判别式是关键.二、填空题(每小题3分,共24分)11、【解析】由图象可得k=9.5,进而得出V=1.9m1时,的值【详解】解:设函数关系式为:V=,由图象可得:V=5,=1.9,代入得:k=51.9=9.5,故V=,当V=1.9时,=5kg/m1故答案为5kg/m1【点睛】本题考查的是反比例函数的应用,正确得出k的值是解

14、题关键12、【分析】设平均每次降价的百分率为x,根据“一件商品的标价为108元,经过两次降价后的销售价是72元”即可列出方程【详解】解:设平均每次降价的百分率为x,根据题意可得:,故答案为:【点睛】本题考查一元二次方程的实际应用,理解题意,找出等量关系是解题的关键13、【解析】试题解析:ABC的外心即是三角形三边垂直平分线的交点,作图得:EF与MN的交点O即为所求的ABC的外心,ABC的外心坐标是(2,1)14、1【分析】由图可得到点B的纵坐标是如何变化的,让A的纵坐标也做相应变化即可得到b的值;看点A的横坐标是如何变化的,让B的横坐标也做相应变化即可得到a的值,相加即可得到所求【详解】由题意

15、可知:a=0+(3-1)=1;b=0+(1-1)=1;a+b=1故答案为:1.【点睛】此题考查坐标与图形的变化-平移,解题的关键是得到各点的平移规律15、1【分析】由题意首先计算乘方、开方和特殊三角函数,然后从左向右依次进行加减计算,即可求出算式的值【详解】解:=1故答案为1.【点睛】本题主要考查实数的运算,要熟练掌握,解答此题的关键是要明确在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行;另外,有理数的运算律在实数范围内仍然适用16、.【分析】利用垂直高度,求出水平宽度,利用勾股定理求解即可

16、【详解】解:如图所示:根据题意,在RtABC中,BC=2m,,解得AC=40m,根据勾股定理m.故答案为:.【点睛】此题主要考查解直角三角形的应用,勾股定理.理解坡度坡角的定义,由勾股定理得出AB是解决问题的关键17、【分析】设反比例函数的解析式为y=(k0),把A点坐标代入可求出k值,即可得答案【详解】设反比例函数的解析式为y=(k0),反比例函数的图像过点,3=,解得:k=-6,这个反比例函数的表达式为,故答案为:【点睛】本题考查待定系数法求反比例函数解析式,熟练掌握反比例函数图象上的点的坐标特征是解题关键18、1【解析】由题意,在长为8cm宽6cm的矩形中,截去一个矩形使留下的矩形与原矩

17、形相似,根据相似形的对应边长比例关系,就可以求解【详解】解:设宽为xcm,留下的矩形与原矩形相似,解得截去的矩形的面积为留下的矩形的面积为48-21=1cm2,故答案为:1【点睛】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键三、解答题(共66分)19、(1)见解析;(2)见解析【分析】(1)作AC的垂直平分线MN交AB于点O,以O为圆心,OA为半径作O即可 (2)根据题目中给的已知条件结合题(1)所作的图综合应用证明OCB90即可解决问题【详解】(1)解:如图,O即为所求(2)证明:连接OCAB30,ACB1803030120,MN垂直平分相对AC,OAOC,AACO3

18、0,OCB90,OCBC,BC是O的切线【点睛】本题主要考查的是尺规作图的方法以及圆的综合应用,注意在尺规作图的时候需要保留作图痕迹.20、(1)证明见解析(2)1【解析】(1)证明:将BCE绕点C顺时针旋转到DCF的位置,BCEDCFFDC=EBCBE平分DBC,DBE=EBCFDC=EBE又DGE=DGE,BDGDEG(2)解:BCEDCF,F=BEC,EBC=FDC四边形ABCD是正方形,DCB=90,DBC=BDC=15BE平分DBC,DBE=EBC=22.5=FDCBDF=15+22.5=67.5,F=9022.5=67.5=BDFBD=BF,BCEDCF,F=BEC=67.5=DE

19、GDGB=18022.567.5=90,即BGDFBD=BF,DF=2DGBDGDEG,BGEG=1, BGEG=DGDG=1DG=2BE=DF=2DG=1(1)根据旋转性质求出EDG=EBC=DBE,根据相似三角形的判定推出即可(2)先求出BD=BF,BGDF,求出BE=DF=2DG,根据相似求出DG的长,即可求出答案21、(1);(2);存在,或【分析】(1)先求得点的坐标,再代入求得b、c的值,即可得二次函数的表达式;(2)作交于点,根据二次函数性质可求得.(3)求出,再根据直线与直线的夹角是的两倍,得出线段的关系,用两点间距离公式求出坐标.【详解】解:如图(1), ;(2)作交于点.设

20、,则:则时,最大,;(2),则,设,若:则,;若则,作于,与重合,关于对称,【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求函数的解析式,三角形面积的巧妙求法,以及对称点之间的关系.22、 (1)见解析;(2) 【分析】(1)连接,根据等腰三角形的性质得到,求得,根据三角形的内角和得到,于是得到是的切线;(2)连接,推出是等边三角形,得到,求得,得到,于是得到结论【详解】(1)证明:连接,是的切线;(2)解:连接,是等边三角形,的半径【点睛】本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键23、(1)3,1;(2)36

21、;(3)【分析】(1)根据B类有6+4=10人,所占的比例是50%,据此即可求得总人数,利用总人数乘以对应的比例即可求得C类的人数,然后求得C类中女生人数,同理求得D类男生的人数;(2)利用360课前预习不达标百分比,即可解答;(3)利用列举法即可表示出各种情况,然后利用概率公式即可求解【详解】(1)C类学生人数:2025%5(名)C类女生人数:523(名),D类学生占的百分比:115%50%25%10%,D类学生人数:2010%2(名),D类男生人数:211(名),故C类女生有3名,D类男生有1名;补充条形统计图,故答案为3,1;(2)360(150%25%15%)36,答:扇形统计图中“课

22、前预习不达标”对应的圆心角度数是36;故答案为36;(3)由题意画树形图如下:从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一位男同学和一位女同学的结果共有3种所以P(所选两位同学恰好是一位男同学和一位女同学)【点睛】此题考查条形统计图和扇形统计图的综合运用,解题关键在于读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小24、海轮距离港口的距离为【分析】过点C作CFAD于点F,设CF=x,根据正切的定义用x表示出AF,根据等腰直角三角形的性质用x表示出EF,根据三角形中位线定理列出方程,解方程得到答案【详解】解:如图,过点作于点 设,表示出 利用,求出 列方程: 求出求出答:海轮距离港口的距离为【点睛】本题考查的是解直角三角形的应用-方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键25、(1) “匀

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论