




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1在平面直角坐标系xOy中,将一块含有45角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C的坐标为()A(,0)B(2,0)C(,0)D(3,0)2下列事
2、件中,是必然事件的是()A两条线段可以组成一个三角形B打开电视机,它正在播放动画片C早上的太阳从西方升起D400人中有两个人的生日在同一天3若点都是反比例函数的图象上的点,并且,则下列各式中正确的是( )ABCD4如图,点,在双曲线上,且若的面积为,则( )A7BCD5我市参加教师资格考试的人数逐年增加,据有关部门统计,2017年约为10万人次,2019年约为18.8万人次,设考试人数年均增长率为x,则下列方程中正确的是 A10(1+2x)=18.8B=10C=18.8D=18.86如图,A是O的圆周角,A40,则OBC()A30B40C50D607用配方法解一元二次方程x26x20,配方后得
3、到的方程是()A(x3)22B(x3)28C(x3)211D(x+3)298一个不透明的盒子装有个除颜色外完全相同的球,其中有4个白球.每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过如此大量重复试验,发现摸到白球的频率稳定在0.2左右,则的值约为( )A8B10C20D409如图,ABC是O的内接三角形,AOB110,则ACB的度数为()A35B55C60D7010如图,四边形内接于,为直径,过点作于点,连接交于点若,则的长为()A8B10C12D1611 “抛一枚均匀硬币,落地后正面朝上”这一事件是( )A必然事件B随机事件C确定事件D不可能事件12若,则()ABCD二、填空题
4、(每题4分,共24分)13方程的解是 14如图,已知AB是O的直径,弦CD与AB相交,若BCD24,则ABD的度数为_度15如图所示,等腰三角形,(为正整数)的一直角边在轴上,双曲线经过所有三角形的斜边中点,已知斜边,则点的坐标为_16若正数a是一元二次方程x25x+m=0的一个根,a是一元二次方程x2+5xm=0的一个根,则a的值是_17如图,点在双曲线()上,过点作轴,垂足为点,分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点,作直线交轴于点,交轴于点,连接.若,则的值为_.18九章算术是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何”其意思为:“今有直角
5、三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步”该问题的答案是_步三、解答题(共78分)19(8分)在平面直角坐标系中,抛物线经过点A、B、C,已知A(-1,0),B(3,0),C(0,-3).(1)求此抛物线的函数表达式;(2)若P为线段BC上一点,过点P作轴的平行线,交抛物线于点D,当BCD面积最大时,求点P的坐标;(3)若M(m,0)是轴上一个动点,请求出CM+MB的最小值以及此时点M的坐标.20(8分)已知抛物线与轴交于A,B两点(A在B左边),与轴交于C点,顶点为P,OC=2AO.(1)求与满足的关系式;(2)直线AD/BC,与抛物线交于
6、另一点D,ADP的面积为,求的值;(3)在(2)的条件下,过(1,-1)的直线与抛物线交于M、N两点,分别过M、N且与抛物线仅有一个公共点的两条直线交于点G,求OG长的最小值.21(8分)如图,已知ADACABAE求证:ADEABC22(10分)如图,在边长为1的正方形组成的网格中,AOB的顶点均在格点上,其中点A(5,4),B(1,3),将AOB绕点O逆时针旋转90后得到A1OB1(1)画出A1OB1;(2)在旋转过程中点B所经过的路径长为_;(3)求在旋转过程中线段AB、BO扫过的图形的面积之和23(10分)在平面直角坐标系中(如图),已知抛物线经过点,与轴交于点,抛物线的顶点为点,对称轴
7、与轴交于点.(1)求抛物线的表达式及点的坐标;(2)点是轴正半轴上的一点,如果,求点的坐标;(3)在(2)的条件下,点是位于轴左侧抛物线上的一点,如果是以为直角边的直角三角形,求点的坐标.24(10分)为了解学生的艺术特长发展情况,某校决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图请你根据统计图解答下列问题:(1)扇形统计图中“戏曲”部分对应的扇形的圆心角为 度;(2)若在“舞蹈、乐器、声乐、戏曲”项目中任选两项成立课外兴趣小组,请用列举法求恰好选中“舞蹈、声乐”
8、这两项的概率25(12分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上方在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为,然后放回洗匀,背面朝上方在桌面上,再由乙从中随机抽取一张卡片,记该卡片上的数字为,组成一数对.(1)请写出.所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽依次卡片,卡片上述资质和为奇数则甲赢,数字之和为偶数则乙赢,你认为这个游戏公平吗?请说明理由.26如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,点C坐标
9、为(1,0),点A坐标为(0,2)一次函数ykx+b的图象经过点B、C,反比例函数y的图象经过点B(1)求一次函数和反比例函数的关系式;(2)直接写出当x0时,kx+b0的解集;(3)在x轴上找一点M,使得AM+BM的值最小,直接写出点M的坐标和AM+BM的最小值参考答案一、选择题(每题4分,共48分)1、C【分析】过点B作BDx轴于点D,易证ACOBCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点【详解】解:过点B作BDx轴于点D,ACO+BCD90,OAC+ACO90,OACBCD,在ACO与BCD中, ACO
10、BCD(AAS)OCBD,OACD,A(0,2),C(1,0)OD3,BD1,B(3,1),设反比例函数的解析式为y,将B(3,1)代入y,k3,y,把y2代入y,x,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,C也移动了个单位长度,此时点C的对应点C的坐标为(,0)故选:C【点睛】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型2、D【解析】一定会发生的事件为必然事件,即发生的概率是1的事件根据事件发生的可能性大小判断相应事件的类型即可【详解】解:A、两条线段可以组成一个三角形是不可能事件;B、打开电视机,
11、它正在播放动画片是随机事件;C、早上的太阳从西方升起是不可能事件;D、400人中有两个人的生日在同一天是不必然事件;故选:D【点睛】本题考查的是必然事件.不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、B【详解】解:根据题意可得:反比例函数处于二、四象限,则在每个象限内为增函数,且当x0时y0,当x0时,y0,.4、A【分析】过点A作ACx轴,过点B作BDx轴,垂足分别为点C,点D,根据待定系数法求出k的值,设点,利用AOB的面积=梯形ACDB的面积+AOC的
12、面积-BOD的面积=梯形ACDB的面积进行求解即可【详解】如图所示,过点A作ACx轴,过点B作BDx轴,垂足分别为点C,点D,由题意知,设点,AOB的面积=梯形ACDB的面积+AOC的面积-BOD的面积=梯形ACDB的面积,解得,或(舍去),经检验,是方程的解,故选A【点睛】本题考查了利用待定系数法求反比例函数的表达式,反比例函数系数k的几何意义,用点A的坐标表示出AOB的面积是解题的关键5、C【分析】根据增长率的计算公式:增长前的数量(1+增长率)增长次数=增长后数量,从而得出答案【详解】根据题意可得方程为:10(1+x)2=18.8,故选:C【点睛】本题主要考查的是一元二次方程的应用,属于
13、基础题型解决这个问题的关键就是明确基本的计算公式6、C【分析】根据一条弧所对的圆周角等于它所对的圆心角的一半求得BOC,再根据三角形的内角和定理以及等腰三角形的两个底角相等进行计算【详解】解:根据圆周角定理,得BOC2A80OBOCOBCOCB50,故选:C【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理,掌握圆周角定理是解题的关键7、C【分析】根据配方法即可求出答案【详解】x26x20,x26x2,(x3)211,故选:C【点睛】考查了配方法解方程,配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方选择用配方法解一元二次方程时
14、,最好使方程的二次项的系数为1,一次项的系数是2的倍数8、C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解【详解】由题意可得,0.2,解得,m20,经检验m=20是所列方程的根且符合实际意义,故选:C【点睛】本题利用了用大量试验得到的频率可以估计事件的概率关键是根据红球的频率得到相应的等量关系9、B【分析】直接根据圆周角定理进行解答即可【详解】解:AOB与ACB是同弧所对的圆心角与圆周角,AOB=110,ACB=AOB=55故选:B【点睛】本题考查了三角形的外接圆与外心,圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于
15、这条弧所对的圆心角的一半10、C【解析】连接,如图,先利用圆周角定理证明得到,再根据正弦的定义计算出,则,接着证明,利用相似比得到,所以,然后在中利用正弦定义计算出的长【详解】连接,如图,为直径,而,而,在中,即,在中,故选C【点睛】本题考查了圆周角定理,解直角三角形,熟练掌握“在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径”是解题的关键.11、B【详解】随机事件.根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬
16、币,落地后正面朝上是随机事件.故选B.12、B【解析】根据合并性质解答即可,对于实数a,b,c,d,且有b0,d0,如果,则有.【详解】,故选:【点睛】本题考查了比例的性质,熟练掌握合比性质是解答本题的关键.合比性质:在一个比例等式中,第一个比例的前后项之和与第一个比例的后项的比,等于第二个比例的前后项之和与第二个比例的后项的比.二、填空题(每题4分,共24分)13、【解析】解:,14、66【解析】连接AD,根据圆周角定理可求ADB=90,由同弧所对圆周角相等可得DCB=DAB,即可求ABD的度数【详解】解:连接AD,AB是直径,ADB90,BCD24,BADBCD24,ABD66,故答案为:
17、66【点睛】本题考查了圆周角定理,根据圆周角定理可求ADB=90是本题的关键15、【分析】先求出双曲线的解析式,设=2,=2,分别求出和的值,从中找到规律表示出的值,据此可求得点的坐标.【详解】解:,是等腰三角形,=4,的坐标是(-4,4),的坐标是(-2,2),双曲线解析式为,设=2,则=2,的坐标是(-4-2,2),的坐标是(-4-,),(-4-)=-4,=(负值舍去),=,设=2,则=2,同理可求得=,=,依此类推=,=,=+=4+=的坐标是(,),故答案是:(,).【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标
18、的积是定值k,即xy=k也考查了等腰直角三角形的性质16、1【解析】试题解析:a是一元二次方程x2-1x+m=0的一个根,-a是一元二次方程x2+1x-m=0的一个根,a2-1a+m=0,a2-1a-m=0,+,得2(a2-1a)=0,a0,a=1考点:一元二次方程的解17、【分析】设OA交CF于K利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【详解】解:如图,设OA交CF于K由作图可知,CF垂直平分线段OA,OC=CA=1,OK=AK,在RtOFC中,CF=,AK=OK=,OA=,AOB+AOF=90,CFO+AOF=90,AOB=CFO,又ABO=COF,FOC
19、OBA,OB=,AB=,A(,),k=故答案为:【点睛】本题考查了尺规作图-作线段的垂直平分线,线段垂直平分线的性质,反比例函数图象上的点的坐标特征,勾股定理,相似三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型18、1【分析】根据勾股定理求出直角三角形的斜边,根据直角三角形的内切圆的半径的求法确定出内切圆半径,得到直径【详解】解:根据勾股定理得:斜边为=17,设内切圆半径为r,由面积法 r= 3(步),即直径为1步,故答案为:1考点:三角形的内切圆与内心三、解答题(共78分)19、(1);(2)P(,),面积最大为;(3)CM+MB最小值为,M(,0)【分析】
20、(1)利用待定系数法即可求得此抛物线的解析式;(2)由待定系数法即可求得直线BC的解析式,设P(a,a-3),得出PD的长,列出SBDC的表达式,化简成顶点式,即可求解;(3)取G点坐标为(0,),过M点作MBBG,用BM代替BM,即可得出最小值的情况,再将直线BG、直线BC的解析式求出,求得M点坐标和CGB的度数,再根据CGB的度数利用三角函数得出最小值BC的值.【详解】解:(1)抛物线经过点A、B、C,A(-1,0),B(3,0),C(0,-3),代入表达式,解得a= 1,b=-2,c=-3,故该抛物线解析式为:.(2)令,x1=-1,x2=3,即B(3,0),设直线BC的解析式为y=kx
21、+b,将B、C代入得:k=,1,b=-3,直线BC的解析式为y=x-3,设P(a,a-3),则D(a,a2-2a-3),PD=(a-3)-(a2-2a-3)= -a2+3aSBDC=SPDC+SPDB=PD3=,当a=时,BDC的面积最大,且为为,此时P(,);(3)如图,取G点坐标为(0,),连接BG,过M点作MBBG,BMBM,当C、M、B在同一条直线上时,CM+MB最小.可求得直线BG解析式为:,BCBG故直线BC解析式为为,令y=0,则x=,BC与x轴交点为(,0)OG=,OB=3,CGB=60,BC= CGsinCGB=,综上所述:CM+MB最小值为,此时M(,0).【点睛】此题考查
22、了待定系数法求函数的解析式、平行线的性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用20、(1);(2);(3).【分析】(1)将抛物线解析式进行因式分解,可求出A点坐标,得到OA长度,再由C点坐标得到OC长度,然后利用OC=2AO建立等量关系即可得到关系式;(2)利用待定系数法求出直线BC的k,根据平行可知AD直线的斜率k与BC相等,可求出直线AD解析式,与抛物线联立可求D点坐标,过P作PEx轴交AD于点E,求出PE即可表示ADP的面积,从而建立方程求解;(3)为方便书写,可设抛物线解析式为:,设
23、,过点M的切线解析式为,两抛物线与切线联立,由可求k,得到M、N的坐标满足,将(1,-1)代入,推出G为直线上的一点,由垂线段最短,求出OG垂直于直线时的值即为最小值.【详解】解:(1)令y=0,解得,令x=0,则, A在B左边A点坐标为(-m,0),B点坐标为(4m,0),C点坐标为(0,-4am2)AO=m,OC=4am2OC=2AO4am2=2m(2)C点坐标为(0,-2m)设BC直线为,代入B(4m,0),C(0,-2m)得,解得ADBC,设直线AD为,代入A(-m,0)得,直线AD为直线AD与抛物线联立得,解得或D点坐标为(5m,3m)又顶点P坐标为如图,过P作PEx轴交AD于点E,
24、则E点横坐标为,代入直线AD得PE=SADP=解得m0 .(3)在(2)的条件下,可设抛物线解析式为:,设,过点M的切线解析式为,将抛物线与切线解析式联立得:,整理得,方程可整理为只有一个交点,整理得即解得过M的切线为同理可得过N的切线为由此可知M、N的坐标满足将代入整理得将(1,-1)代入得在(2)的条件下,抛物线解析式为,即整理得G点坐标满足,即G为直线上的一点,当OG垂直于直线时,OG最小,如图所示,直线与x轴交点H(5,0),与y轴交点F(0,)OH=5,OF=,FH=OG的最小值为.【点睛】本题考查二次函数与一次函数的综合问题,难度很大,需要掌握二次函数与一次函数的图像与性质和较强的
25、数形结合能力.21、证明见解析.【分析】由ADACAEAB,可得,从而根据“两边对应成比例并且夹角相等的两个三角形相似”可证明结论成立.【详解】试题分析:证明:ADACAEAB,在ABC与ADE 中,AA, ABCADE22、(1)画图见解析;(2);(3).【解析】试题分析:(1)根据网格结构找出点A、B绕点O逆时针旋转90后的对应点A1、B1的位置,然后顺次连接即可;(2)利用勾股定理列式求OB,再利用弧长公式计算即可得解;(3)利用勾股定理列式求出OA,再根据AB所扫过的面积=S扇形A1OA+SA1B1O-S扇形B1OB-SAOB=S扇形A1OA-S扇形B1OB求解,再求出BO扫过的面积
26、=S扇形B1OB,然后计算即可得解试题解析:(1)A1OB1如图所示;(2)由勾股定理得,BO=,所以,点B所经过的路径长=(3)由勾股定理得,OA=,AB所扫过的面积=S扇形A1OA+SA1B1O-S扇形B1OB-SAOB=S扇形A1OA-S扇形B1OBBO扫过的面积=S扇形B1OB,线段AB、BO扫过的图形的面积之和=S扇形A1OA-S扇形B1OB+S扇形B1OB,=S扇形A1OA,=考点:1.作图-旋转变换;2.勾股定理;3.弧长的计算;4.扇形面积的计算23、(1),;(2);(3)或【分析】(1)将点A、B 代入抛物线,即可求出抛物线解析式,再化为顶点式即可;(2)如图1,连接AB,
27、交对称轴于点N,则N(-,-2),利用相等角的正切值相等即可求出EH的长,OE的长,可写出点E的坐标;(3)分EAP=90和AEP=90两种情况讨论,通过相似的性质,用含t的代数式表示出点P的坐标,可分别求出点P的坐标【详解】解:(1)(1)将点A(-3,-2)、B (0,-2)代入抛物线,得,解得,a=,c=-2,y=x2+4x-2=(x+)2-5,抛物线解析式为y=x2+4x-2,顶点C的坐标为(-,-5); (2)如图1,连接AB,交对称轴于点N,则N(-,-2),则, 过作,则,OH=3,OE=1,(3)如图2,当EAP=90时,HEA+HAE=90,HAE+MAP=90, HEA=M
28、AP,又AHE=PMA=90,则,设,则将代入得(舍),如图3,当AEP=90时, EAG+AEG=90,AEG+PEN=90, AEG=EPN,又N=G=90,则设,则将代入得,(舍),综上所述:,【点睛】此题考查了待定系数法求解析式,锐角三角函数,直角三角形的存在性等,解题关键是能够作出适当的辅助线构造相似三角形,并注意分类讨论思想的运用24、(1)28.8;(2)【分析】(1)用喜欢声乐的人数除以它所占百分比即可得到调查的总人数,用总人数分别减去喜欢舞蹈、乐器、和其它的人数得到喜欢戏曲的人数,即可得出答案;(2)先画树状图展示所有12种等可能的结果数,再找出恰好选中“舞蹈、声乐”两项活动的结果数,然后根据概率公式计算【详解】(1)抽查的人数816%50(名);喜欢“戏曲”活动项目的人数5012168104(人);扇形统计图中“戏曲”部分对应的扇形的圆心角为36028.8;故答案为:28.8;(2)舞蹈、乐器、声乐、戏曲的序号依次用表示,画树状图:共有12种等可能的结果数,其中恰好选中“舞蹈、声乐”两项活动的有2种情况,所有故恰好选中“舞蹈、声乐”两项活动的概率【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率也
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论