




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1如果将抛物线向右平移1个单位,那么所得新抛物线的顶点坐标是( )ABCD2将抛物线向上平移两个单位长度,得到的抛物线解析式是( )ABCD3方程的根是()Ax=4 Bx=0 C D 4
2、如图,在正方形网格上,与ABC相似的三角形是()AAFDBFEDCAEDD不能确定5如图,在平行四边形ABCD中,BAD的平分线交BC于点E,ABC的平分线交AD于点F,若BF12,AB10,则AE的长为()A10B12C16D186已知点C为线段AB延长线上的一点,以A为圆心,AC长为半径作A,则点B与A的位置关系为()A点B在A上B点B在A外C点B在A内D不能确定7如图,滑雪场有一坡角为20的滑雪道,滑雪道AC的长为200米,则滑雪道的坡顶到坡底垂直高度AB的长为( )A200tan20米B米C200sin20米D200cos20米8如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩
3、的平均数与方差:甲乙丙丁平均数(cm)181186181186方差3.53.56.57.5根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A甲B乙C丙D丁9将抛物线通过一次平移可得到抛物线对这一平移过程描述正确的是( )A沿x轴向右平移3个单位长度B沿x轴向左平移3个单位长度C沿y轴向上平移3个单位长度D沿y轴向下平移3个单位长度10如图,在菱形ABCD中,点E,F分别在AB,CD上,且,连接EF交BD于点O连接AO.若,,则的度数为( )A50B55C65D75二、填空题(每小题3分,共24分)11抛物线的顶点坐标是_12在RtABC中,C=90,AC=6,BC=8
4、(如图),点D是边AB上一点,把ABC绕着点D旋转90得到,边与边AB相交于点E,如果AD=BE,那么AD长为_13如图,ABC中,DEBC,ADE的面积为8,则ABC的面积为_14如图,直线与双曲线(k0)相交于A(1,)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为_.15二次函数y=x22x+3图象的顶点坐标为_16O的半径为10cm,点P到圆心O的距离为12cm,则点P和O的位置关系是_17在如图所示的电路图中,当随机闭合开关,中的两个时,能够让灯泡发光的概率为_18如图,将RtABC绕着顶点A逆时针旋转使得点C落在AB上的C处,点B落在B处,联结BB,如果AC4,A
5、B5,那么BB_三、解答题(共66分)19(10分)解方程:(l)(2)(配方法)20(6分)某商品的进价为每件10元,现在的售价为每件15元,每周可卖出100件,市场调查反映:如果每件的售价每涨1元(售价每件不能高于20元),那么每周少卖10件.设每件涨价元(为非负整数),每周的销量为件.(1)求与的函数关系式及自变量的取值范围;(2)如果经营该商品每周的利润是560元,求每件商品的售价是多少元?21(6分)如图所示,在平面直角坐标系中,抛物线的顶点坐标为,并与轴交于点,点是对称轴与轴的交点(1)求抛物线的解析式;(2)如图所示, 是抛物线上的一个动点,且位于第一象限,连结BP、AP,求的面
6、积的最大值;(3)如图所示,在对称轴的右侧作交抛物线于点,求出点的坐标;并探究:在轴上是否存在点,使?若存在,求点的坐标;若不存在,请说明理由22(8分)如图,一次函数ykxb的图象与反比例函数y的图象交于点A(3,m8),B(n,6)两点(1)求一次函数与反比例函数的解析式;(2)求AOB的面积23(8分)如图,直线yx+b与双曲线y(k为常数,k0)在第一象限内交于点A(1,2),且与x轴、y轴分别交于B,C两点(1)求直线和双曲线的解析式;(2)点P在x轴上,且BCP的面积等于2,求P点的坐标24(8分)(1)计算:; (2)解方程25(10分)如图,在平行四边形ABCD中,E为BC边上
7、一点,连接DE,点F为线段DE上一点,且AFEB(1)求证ADFDEC;(2)若BE2,AD6,且DF=DE,求DF的长度26(10分)表是2019年天气预报显示宿迁市连续5天的天气气温情况利用方差判断这5天的日最高气温波动大还是日最低气温波动大12月17日12月18日12月19日12月20日12月21日最高气温()106789最低气温()10103参考答案一、选择题(每小题3分,共30分)1、C【分析】根据抛物线的平移规律得出平移后的抛物线的解析式,即可得出答案【详解】解:由将抛物线y=3x2+2向右平移1个单位,得y=3(x-1)2+2,顶点坐标为(1,2),故选:C【点睛】本题考查了二次
8、函数图象与几何变换,利用平移规律:左加右减,上加下减是解题关键2、D【分析】按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.【详解】由题意得=.故选D.【点睛】本题考查了二次函数图象的平移,其规律是:将二次函数解析式转化成顶点式y=a(x-h)2+k(a,b,c为常数,a0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移; k值正上移,负下移”3、C【分析】利用因式分解法求解即可【详解】方程整理得:x(x1)=0,可得x=0或x1=0,解得:x1=0,x2=1故选C【点睛】本题考查了一元二次方程因式分解法,熟练掌握因式分解的方法是解答本题的关键4、A
9、【分析】根据题意直接利用三角形三边长度,得出其比值,进而分析即可求出相似三角形【详解】解:AF4,DF4 ,AD4 ,AB2,BC2 ,AC2 ,AFDABC故选:A【点睛】本题主要考查相似三角形的判定以及勾股定理,由勾股定理得出三角形各边长是解题的关键5、C【解析】先证明四边形ABEF是菱形,得出AEBF,OA=OE,OB=OF=BF=6,由勾股定理求出OA,即可得出AE的长【详解】如图,四边形ABCD是平行四边形,ADBC,DAE=AEB,BAD的平分线交BC于点E,DAE=BAE,BAE=AEB,AB=BE,同理可得AB=AF,AF=BE,四边形ABEF是平行四边形,AB=AF,四边形A
10、BEF是菱形,AEBF,OA=OE,OB=OF=BF=6,OA=8,AE=2OA=16;故选C【点睛】本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF是菱形是解决问题的关键6、C【分析】根据题意确定ACAB,从而确定点与圆的位置关系即可【详解】解:点C为线段AB延长线上的一点,ACAB,以A为圆心,AC长为半径作A,则点B与A的位置关系为点B在A内,故选:C【点睛】本题考查的知识点是点与圆的位置关系,根据题意确定出ACAB是解此题的关键7、C【解析】解:sinC=,AB=ACsinC=200sin20故选C8、B【
11、分析】根据平均数与方差的意义解答即可.【详解】解: ,乙与丁二选一,又,选择乙.【点睛】本题考查数据的平均数与方差的意义,理解两者所代表的的意义是解答关键.9、A【分析】分别确定出两个抛物线的顶点坐标,再根据左减右加,确定平移方向即可得解【详解】解:抛物线的顶点坐标为(0,2),抛物线的顶点坐标为(3,-2),所以,向右平移3个单位,可以由抛物线平移得到抛物线故选:A【点睛】本题考查了二次函数图象与几何变换,利用点的平移规律左减右加,上加下减解答是解题的关键10、C【分析】由菱形的性质以及已知条件可证明BOEDOF,然后根据全等三角形的性质可得BO=DO,即O为BD的中点,进而可得AOBD,再
12、由ODA=DBC=25,即可求出OAD的度数.【详解】四边形ABCD为菱形AB=BC=CD=DA,ABCD,ADBCODA=DBC=25,OBE=ODF,又AE=CFBE=DF在BOE和DOF中,BOEDOF(AAS)OB=OD即O为BD的中点,又AB=ADAOBDAOD=90OAD=90-ODA=65故选C.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,以及等腰三角形三线合一的性质,熟练掌握菱形的性质,得出全等三角形的判定条件是解题的关键.二、填空题(每小题3分,共24分)11、(0,-3).【解析】试题解析:二次函数, 对称轴 当时, 顶点坐标为: 故答案为:12、【解析】在RtA
13、BC中,由旋转的性质,设AD=AD=BE=x,则DE=2x-10,ABC绕AB边上的点D顺时针旋转90得到ABC,A=A,ADE=C=90,BCA, , =10-x, , x= ,故答案为.13、18.【解析】在ABC中,DEBC,ADEABC,14、(0,)【解析】试题分析:把点A坐标代入y=x+4得a=3,即A(1,3),把点A坐标代入双曲线的解析式得3=k,即k=3,联立两函数解析式得:,解得:,即点B坐标为:(3,1),作出点A关于y轴的对称点C,连接BC,与y轴的交点即为点P,使得PA+PB的值最小,则点C坐标为:(1,3),设直线BC的解析式为:y=ax+b,把B、C的坐标代入得:
14、,解得:,所以函数解析式为:y=x+,则与y轴的交点为:(0,)考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题15、(1,2)【分析】先把此二次函数右边通过配方写成顶点式得:y=(x-1)2+2,从而求解.【详解】解:y=x22x+3y=x22x+1+2y=(x-1)2+2,所以,其顶点坐标是(1,2)故答案为(1,2)【点睛】本题考查将二次函数一般式化为顶点式求二次函数的顶点坐标,正确计算是本题的解题关键16、点P在O外【分析】根据点与圆心的距离d,则dr时,点在圆外;当d=r时,点在圆上;当dr时,点在圆内【详解】解:O的半径r=10cm,点P到圆心O的距离OP=12cm,OP
15、r,点P在O外,故答案为点P在O外【点睛】本题考查了对点与圆的位置关系的判断关键要记住若半径为r,点到圆心的距离为d,则有:当dr时,点在圆外;当d=r时,点在圆上,当dr时,点在圆内17、【分析】分析电路图知:要让灯泡发光,必须闭合,同时,中任意一个关闭时,满足条件,从而求算概率【详解】分析电路图知:要让灯泡发光,必须闭合,同时,中任意一个关闭时,满足:一共有:,、,、,三种情况,满足条件的有,、,两种,能够让灯泡发光的概率为:故答案为:【点睛】本题考查概率运算,分析出所有可能的结果,寻找出满足条件的情况是解题关键18、【分析】根据旋转的性质和勾股定理,在RtBCB中,求出BC,BC即可解决
16、问题【详解】解:在RtABC中,AC4,AB5,C90,BC3,ACAC4,BCBC3,BCABAC541,BCB90,BB,故答案为【点睛】此题考查的是旋转的性质和勾股定理,掌握旋转的性质和利用勾股定理解直角三角形是解决此题的关键三、解答题(共66分)19、(1);(2)【分析】(1)利用因式分解法求解;(2)在左右两边同时加上一次项系数-8的一半的平方后配方,再开方,即可得出两个一元一次方程,即可求解【详解】解:(1),或,所以;(2),即,则,【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、
17、简便的方法是解题的关键20、(1),;(2)每件的售价是17元或者18元.【分析】(1)根据“每件的售价每涨1元,那么每周少卖10件”,即可求出y与x的函数关系式,然后根据x的实际意义和售价每件不能高于20元即可求出x的取值范围;(2)根据总利润=单件利润件数,列方程,并解方程即可【详解】(1)解:与的函数关系式为售价每件不能高于20元自变量的取值范围是;(2)解:设每件涨价元(为非负整数),则每周的销量为件,根据题意列方程,解得:,所以,每件的售价是17元或者18元答:如果经营该商品每周的利润是560元,求每件商品的售价是17元或者18元【点睛】此题考查的是一次函数的应用和一元二次方程的应用
18、,掌握实际问题中的等量关系是解决此题的关键21、(1);(2)当时,最大值为;(3)存在,点坐标为,理由见解析【分析】(1)利用待定系数法可求出二次函数的解析式; (2)求三角形面积的最值,先求出三角形面积的函数式.从图形上看SPAB=SBPO+SAPO-SAOB,设P求出关于n的函数式,从而求SPAB的最大值.(3) 求点D的坐标,设D,过D做DG垂直于AC于G,构造直角三角形,利用勾股定理或三角函数值来求t的值即得D的坐标;探究在y轴上是否存在点,使?根据以上条件和结论可知CAD=120,是CQD的2倍,联想到同弧所对的圆周角和圆心角,所以以A为圆心,AO长为半径做圆交y轴与点Q,若能求出
19、这样的点,就存在Q点.【详解】解:抛物线顶点为可设抛物线解析式为将代入得抛物线,即连接,设点坐标为当时,最大值为存在,设点D的坐标为过作对称轴的垂线,垂足为,则在中有化简得(舍去),点D(,-3) 连接,在中在以为圆心,为半径的圆与轴的交点上此时设点为(0,m), AQ为的半径则AQ=OQ+OA, 6=m+3即综上所述,点坐标为故存在点Q,且这样的点有两个点.【点睛】(1)本题考查了利用待定系数法求二次函数解析式,根据已知条件选用顶点式较方便;(2)本题是三角形面积的最值问题,解决这个问题应该在分析图形的基础上,引出自变量,再根据图形的特征列出面积的计算公式,用含自变量的代数式表示面积的函数式
20、,然后求出最值.(3)先求抛物线上点的坐标问题及符合条件的点是否存在.一般先假设这个点存在,再根据已知条件求出这个点.22、(1)y=-,y=-2x-4(2)1【分析】(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据SAOB=SAOC+SBOC列式计算即可得解【详解】(1)将A(3,m+1)代入反比例函数y=得,=m+1,解得m=6,m+1=6+1=2,所以,点A的坐标为(
21、3,2),反比例函数解析式为y=,将点B(n,6)代入y=得,=6,解得n=1,所以,点B的坐标为(1,6),将点A(3,2),B(1,6)代入y=kx+b得,解得,所以,一次函数解析式为y=2x4;(2)设AB与x轴相交于点C,令2x4=0解得x=2,所以,点C的坐标为(2,0),所以,OC=2,SAOB=SAOC+SBOC,=22+26,=2+6,=1考点:反比例函数与一次函数的交点问题23、(1)y;yx+1;(2)P点的坐标为(3,0)或(5,0)【解析】(1)把A(1,2)代入双曲线以及直线yx+b,分别可得k,b的值;(2)先根据直线解析式得到BOCO1,再根据BCP的面积等于2,即可得到P的坐标【详解】解:(1)把A(1,2)代入双曲线y,可得k2,双曲线的解析式为y;把A(1,2)代入直线yx+b,可得b1,直线的解析式为yx+1;(2)设P点的坐标为(x,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国智能停车行业现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030年中国显示器清洁剂行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030年中国无水甲醇行业市场深度调研及竞争格局与投资研究报告
- 总结回顾执业医师考试试题及答案
- 暴露与反应药物的相互作用考题
- 2025-2030年中国数字文旅行业市场发展分析及发展前景与投资研究报告
- 2025年药师职业生涯问答试题及答案
- 2025-2030年中国搅拌泵车行业市场深度调研及前景趋势与投资研究报告
- 核心护理知识回顾试题及答案
- 2025年消化道疾病的管理试题及答案
- 国网北京市电力公司授权委托书(用电)
- 边坡支护之锚杆施工技术ppt版(共35页)
- 黄芩常见的病虫害症状及防治措施
- 中小学教育惩戒规则(试行)全文解读ppt课件
- 思政课社会实践报告1500字6篇
- GB∕T 25119-2021 轨道交通 机车车辆电子装置
- 电池PCBA规格书
- 机械零件加工验收检验记录(共2页)
- 机械加工切削全参数推荐表
- 终端塔基础预偏值(抬高值)计算表格
- 海外医疗服务委托合同协议书范本模板
评论
0/150
提交评论