




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( )ABCD2如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OABC与矩形OABC关于点O位似,且矩形OABC的面积等
2、于矩形OABC面积的,那么点B的坐标是()A(3,2)B(2,3)C(2,3)或(2,3)D(3,2)或(3,2)3如图,AB是O的直径,弦CD交AB于点E,且E是CD的中点,CDB=30,CD=6,则阴影部分面积为()AB3C6D124如图,正五边形ABCDE内接于O,则ABD的度数为( )A60B72C78D1445如图,已知点是反比例函数的图象上一点,轴于,且的面积为3,则的值为( )A4B5C6D76时钟上的分针匀速旋转一周需要60分钟,则经过10分钟,分针旋转了().A10B20C30D607如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A极差是
3、8B众数是28C中位数是24D平均数是268如图,边长为1的小正方形构成的网格中,半径为1的O的圆心O在格点上,则BED的正切值等于()ABC2D9下列事件中,属于必然事件的是()A明天太阳从北边升起B实心铅球投入水中会下沉C篮球队员在罚球线投篮一次,投中D抛出一枚硬币,落地后正面向上10如图,正六边形内接于圆,圆半径为2,则六边形的边心距的长为( )A2BC4D二、填空题(每小题3分,共24分)11布袋里有8个大小相同的乒乓球,其中2个为红色,1个为白色,5个为黄色,搅匀后从中随机摸出一个球是红色的概率是_.12如图,一个半径为,面积为的扇形纸片,若添加一个半径为的圆形纸片,使得两张纸片恰好
4、能组合成一个圆锥体,则添加的圆形纸片的半径为_13将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线解析式为_14若点P(2a+3b,2)关于原点的对称点为Q(3,a2b),则(3a+b)2020_.15如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_16已知是关于x的一元二次方程的一个解,则此方程的另一个解为_.17如图所示,等腰三角形,(为正整数)的一直角边在轴上,双曲线经过所有三角形的斜边中点,已知斜边,则点的坐标为_18(2016广东省茂名市)如图,在平面直角
5、坐标系中,将ABO绕点B顺时针旋转到A1BO1的位置,使点A的对应点A1落在直线上,再将A1BO1绕点A1顺时针旋转到A1B1O2的位置,使点O1的对应点O2落在直线上,依次进行下去,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是_三、解答题(共66分)19(10分)如图,在由12个小正方形构造成的网格图(每个小正方形的边长均为1)中,点A,B,C(1)画出ABC绕点B顺时针旋转90后得到的A1B1C1;(2)若点D,E也是网格中的格点,画出BDE,使得BDE与ABC相似(不包括全等),并求相似比20(6分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改
6、建如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶已知BC=80千米,A=45,B=30(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:1.41,1.73)21(6分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外无其它差别,其中红球有个,若从中随机摸出一个,这个球是白球的概率为(1)求袋子中白球的个数;(2)随机摸出一个球后,不放回,再随机摸出一个球,请结合树状图或列表求两次都摸到相同颜色的小球的概率22(8分)平面直
7、角坐标系xOy中,二次函数y=x22mx+m2+2m+2的图象与x轴有两个交点(1)当m=2时,求二次函数的图象与x轴交点的坐标;(2)过点P(0,m1)作直线1y轴,二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上),求m的范围;(3)在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求ABO的面积最大时m的值23(8分)用适当的方法解方程:(1)(2)24(8分)为了创建文明城市,增弘环保意识,某班随机抽取了8名学生(分别为A,B,C,D,E,F,G,H),进行垃圾分类投放检测,检测结果如下表,其中“”表示投放正确,“”表示投放错误,学生垃圾类别ABCDEFGH可回收
8、物其他垃圾餐厨垃圾有害垃圾(1)检测结果中,有几名学生正确投放了至少三类垃圾?请列举出这几名学生(2)为进一步了解学生垃圾分类的投放情况,从检测结果是“有害垃圾”投放错误的学生中随机抽取2名进行访谈,求抽到学生A的概率25(10分)某市政府高度重视教育工作,财政资金优先保障教育,2017年新校舍建设投入资金8亿元,2019年新校舍建设投入资金11.52亿元。求该市政府从2017年到2019年对校舍建设投入资金的年平均增长率.26(10分)(1)解方程:(2)已知点P(a+b,-1)与点Q(-5,a-b)关于原点对称,求a,b的值参考答案一、选择题(每小题3分,共30分)1、D【解析】由于内接正
9、三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积【详解】如图1,OC=1,OD=1sin30=;如图2,OB=1,OE=1sin45=;如图3,OA=1,OD=1cos30=,则该三角形的三边分别为:、,()2+()2=()2,该三角形是以、为直角边,为斜边的直角三角形,该三角形的面积是,故选:D【点睛】考查正多边形的外接圆的问题,应用边心距,半径和半弦长构成直角三角形,来求相关长度是解题关键。2、D【分析】利用位似图形的性质得出位似比,进而得出对应点的坐标【详解】解:矩形OABC的面积等于矩形OABC面积
10、的,两矩形面积的相似比为:1:2,B的坐标是(6,4),点B的坐标是:(3,2)或(3,2)故答案为:D【点睛】此题主要考查了位似变换的性质,得出位似图形对应点坐标性质是解题关键3、D【解析】根据题意得出COB是等边三角形,进而得出CDAB,再利用垂径定理以及锐角三角函数关系得出CO的长,进而结合扇形面积求出答案【详解】解:连接BC,CDB=30,COB=60,AOC=120,又CO=BO,COB是等边三角形,E为OB的中点,CDAB,CD=6,EC=3,sin60CO=3,解得:CO=6,故阴影部分的面积为:=12故选:D【点睛】此题主要考查了垂径定理以及锐角三角函数和扇形面积求法等知识,正
11、确得出CO的长是解题关键4、B【分析】如图(见解析),先根据正五边形的性质得圆心角的度数,再根据圆周角定理即可得.【详解】如图,连接OA、OE、OD由正五边形的性质得:由圆周角定理得:(一条弧所对圆周角等于其所对圆心角的一半)故选:B.【点睛】本题考查了正五边形的性质、圆周角定理,熟记性质和定理是解题关键.5、C【分析】根据反比例函数的几何意义解答即可【详解】解:设A点坐标为(a,b),由题意可知:AB=a,OB=b因为ab=6将(a,b)带入反比例函数得:解得:故本题答案为:C【点睛】本题考查了反比例函数的图像与性质和三角形的基本概念6、D【分析】先求出时钟上的分针匀速旋转一分钟时的度数为6
12、,再求10分钟分针旋转的度数就简单了【详解】解:时钟上的分针匀速旋转一周的度数为360,时钟上的分针匀速旋转一周需要60分钟,则时钟上的分针匀速旋转一分钟时的度数为:360606,那么10分钟,分针旋转了10660,故选:D【点睛】本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360,所以时钟上的分针匀速旋转一分钟时的度数,是解答本题的关键7、B【解析】分析:根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题详解:由图可得,极差是:30-20=10,故选项A错误,众数是28,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位
13、数是26,故选项C错误,平均数是:,故选项D错误,故选B点睛:本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确8、D【分析】根据同弧或等弧所对的圆周角相等可知BED=BAD,再结合图形根据正切的定义进行求解即可得.【详解】DAB=DEB,tanDEB= tanDAB=,故选D【点睛】本题考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键9、B【解析】必然事件就是一定会发生的事件,依据定义即可判断【详解】A、明天太阳从北边升起是不可能事件,错误;B、实心铅球投入水中会下沉是必然事件,正确;C、篮球队员在罚
14、球线投篮一次,投中是随机事件,错误;D、抛出一枚硬币,落地后正面向上是随机事件,错误;故选B【点睛】考查的是必然事件、不可能事件、随机事件的概念,必然事件是指在一定条件下,一定发生的事件.10、D【分析】连接OB、OC,证明OBC是等边三角形,得出即可求解【详解】解:连接OB、OC,如图所示:则BOC=60,OB=OC,OBC是等边三角形,BC=OB=2,OMBC,OBM为30、60、90的直角三角形,故选:D【点睛】本题考查了正多边形和圆、正六边形的性质、垂径定理、勾股定理、等边三角形的判定与性质;熟练掌握正六边形的性质,证明三角形是等边三角形和运用垂径定理求出BM是解决问题的关键二、填空题
15、(每小题3分,共24分)11、【分析】直接根据概率公式求解【详解】解:随机摸出一个球是红色的概率=故答案为:【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数12、1【分析】能组合成圆锥体,那么扇形的弧长等于圆形纸片的周长应先利用扇形的面积=圆锥的弧长母线长1,得到圆锥的弧长=1扇形的面积母线长,进而根据圆锥的底面半径=圆锥的弧长1求解【详解】解:圆锥的弧长=1116=4,圆锥的底面半径=41=1cm,故答案为1【点睛】解决本题的难点是得到圆锥的弧长与扇形面积之间的关系,注意利用圆锥的弧长等于底面周长这个知识点13、【分析】根据“左加右减、上加
16、下减”的原则进行解答即可【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的解析式为,故答案为:【点睛】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减14、1【分析】直接利用关于原点对称点的性质得出3a+b1,进而得出答案.【详解】解:点P(2a+3b,2)关于原点的对称点为Q(3,a2b),故3a+b1,则(3a+b)20201.故答案为:1.【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号关系是解题关键15、(2,6)【分析】此题涉及的知识点是平面直角坐标系图像性质的综合应用过点M作MFCD于F,过
17、C作CEOA于E,在RtCMF中,根据勾股定理即可求得MF与EM,进而就可求得OE,CE的长,从而求得C的坐标【详解】四边形OCDB是平行四边形,点B的坐标为(16,0),CDOA,CD=OB=16,过点M作MFCD于F,则 过C作CEOA于E,A(20,0),OA=20,OM=10,OE=OMME=OMCF=108=2,连接MC, 在RtCMF中, 点C的坐标为(2,6).故答案为(2,6).【点睛】此题重点考察学生对坐标与图形性质的实际应用,勾股定理,注意数形结合思想在解题的关键16、【分析】将x=-3代入原方程,解一元二次方程即可解题.【详解】解:将x=-3代入得,a=-1,原方程为,解
18、得:x=1或-3,【点睛】本题考查了含参的一元二次方程的求解问题,属于简单题,熟悉概念是解题关键.17、【分析】先求出双曲线的解析式,设=2,=2,分别求出和的值,从中找到规律表示出的值,据此可求得点的坐标.【详解】解:,是等腰三角形,=4,的坐标是(-4,4),的坐标是(-2,2),双曲线解析式为,设=2,则=2,的坐标是(-4-2,2),的坐标是(-4-,),(-4-)=-4,=(负值舍去),=,设=2,则=2,同理可求得=,=,依此类推=,=,=+=4+=的坐标是(,),故答案是:(,).【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k0)的图象是双曲线,图象上的
19、点(x,y)的横纵坐标的积是定值k,即xy=k也考查了等腰直角三角形的性质18、【解析】试题分析:由题意点A2的横坐标(+1),点A4的横坐标3(+1),点A6的横坐标(+1),点A8的横坐标6(+1)考点:(1)坐标与图形变化-旋转;(2)一次函数图象与几何变换三、解答题(共66分)19、(1)如图1所示:A1B1C1,即为所求;见解析;(1)如图1所示:BDE,即为所求,见解析;相似比为:1【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案; (1)直接利用相似图形的性质得出符合题意的答案【详解】(1)如图1所示:A1B1C1,即为所求;(1)如图1所示:BDE,即为所求,相似比为
20、: :1【点睛】本题主要考查了相似变换以及旋转变换,正确得出对应点位置是解题关键20、(1)开通隧道前,汽车从A地到B地大约要走136.4千米;(2)汽车从A地到B地比原来少走的路程为27.2千米【分析】(1)过点C作AB的垂线CD,垂足为D,在直角ACD中,解直角三角形求出CD,进而解答即可;(2)在直角CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程【详解】解:(1)过点C作AB的垂线CD,垂足为D,ABCD,sin30=,BC=80千米,CD=BCsin30=80(千米),AC=(千米),AC+BC=80+40401.41+80=136.4(千米),
21、答:开通隧道前,汽车从A地到B地大约要走136.4千米;(2)cos30=,BC=80(千米),BD=BCcos30=80(千米),tan45=,CD=40(千米),AD=(千米),AB=AD+BD=40+4040+401.73=109.2(千米),汽车从A地到B地比原来少走多少路程为:AC+BCAB=136.4109.2=27.2(千米)答:汽车从A地到B地比原来少走的路程为27.2千米【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线21、(1)袋子中白球有4个;(2)【分析】(1)设白球有x个,利用概率公式得方程
22、,解方程即可求解;(2)画树状图展示所有30种等可能的结果数,再找出两次摸到颜色相同的小球的结果数,然后根据概率公式求解【详解】(1)设袋中白球有x个,由题意得:,解之,得:,经检验,是原方程的解,故袋子中白球有4个;(2)设红球为A、B,白球为,列举出两次摸出小球的所有可能情况有:共有30种等可能的结果,其中,两次摸到相同颜色的小球有14种,故两次摸到相同颜色的小球的概率为:【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率22、(1)抛物线与x轴交点坐标为:(2+,0)(2,0)(2)3m
23、1(3)当m=时,S最大=【解析】分析:(1)与x轴相交令y=0,解一元二次方程求解;(2)应用配方法得到顶点A坐标,讨论点A与直线l以及x轴之间位置关系,确定m取值范围(3)在(2)的基础上表示ABO的面积,根据二次函数性质求m详解:(1)当m=2时,抛物线解析式为:y=x2+4x+2令y=0,则x2+4x+2=0解得x1=2+,x2=2抛物线与x轴交点坐标为:(2+,0)(2,0)(2)y=x22mx+m2+2m+2=(xm)2+2m+2抛物线顶点坐标为A(m,2m+2)二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上)当直线1在x轴上方时不等式无解当直线1在x轴下方时解得3m1(3)由(1)点A在点B上方,则AB=(2m+2)(m1)=m+3ABO的面积S=(m+3)(m)=0当m=时,S最大= 点睛:本题以含有字母系数m的二次函数为背景,考查了二次函数图象性质以及分类讨论、数形结合的数学思想23、(1);(2)=,=1【分析】(1)用公式法求解;(2)用因式分解法求解【详解】解:(1)a=2,b=3,c=-5,=32-12(-5)=190,所以x1=1,x1=;(2)(x+3)+(1-2x) (x+3)-(1-2x)=0(-x+1)(3x+2)=0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高校科技创新路径探索与实践方案
- 2024年电解电容器纸项目资金需求报告代可行性研究报告
- 合同协议书怎么记忆
- 破碎设备安装合同协议书
- 地面保护合同协议书
- 纺织品设计师证书考试中常见问题的识别与应对试题及答案
- 荒山合同协议书
- 历年中考英语2016山东临沂英语试卷+答案+解析
- 纺织工程师证书考试系统优化试题及答案
- 合同 协议书 写作
- 氨水浓度密度温度对照表
- 小学生研学旅行展示ppt模板
- 带式输送机毕业设计论文
- 基础工程之地基处理培训讲义
- 中级技工防水工考核试题及答案
- 高水平环境艺术设计专业群自评报告
- 新店特大桥45#墩水渠改移施工方案打印版
- 急重症脓毒症及脓毒性休克患者液体治疗
- 山东省铅酸蓄电池收集和转移管理制度试点工作方案
- 2022年12月大学英语四级考试真题及答案(第2套)
- 新型功能材料-漂珠
评论
0/150
提交评论