江苏省无锡市江阴市南菁高中学实验学校2023学年数学九上期末综合测试模拟试题含解析_第1页
江苏省无锡市江阴市南菁高中学实验学校2023学年数学九上期末综合测试模拟试题含解析_第2页
江苏省无锡市江阴市南菁高中学实验学校2023学年数学九上期末综合测试模拟试题含解析_第3页
江苏省无锡市江阴市南菁高中学实验学校2023学年数学九上期末综合测试模拟试题含解析_第4页
江苏省无锡市江阴市南菁高中学实验学校2023学年数学九上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题3分,共30分)1二次函数的图象与轴的交点个数是( )A2个B1个C0个D不能

2、确定2如图,四点在上,. 则的度数为( )ABCD3下列方程中,是关于x的一元二次方程是()ABx2+2xx21Cax2+bx+c0D3(x+1)22(x+1)4下列图形中,是中心对称图形,但不是轴对称图形的是()ABCD5如图,一农户要建一个矩形花圃,花圃的一边利用长为12 m的住房墙,另外三边用25 m长的篱笆围成,为方便进出,在垂直于住房墙的一边留一个1 m宽的门,花圃面积为80 m2,设与墙垂直的一边长为x m,则可以列出关于x的方程是()Ax(262x)80Bx(242x)80C(x1)(262x)80Dx(252x)806二次函数图象的顶点坐标是()ABCD7下列银行标志图片中,既

3、是轴对称图形又是中心对称图形的是( )ABCD8为了估计抛掷某枚啤酒瓶盖落地后凸面向下的概率,小明做了大量重复试验经过统计得到凸面向上的次数为次,凸面向下的次数为次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向下的概率约为( )ABCD9在相同时刻,物高与影长成正比如果高为1.5米的标杆影长为2.5米,那么此时高为18米的旗杆的影长为( )A20米B30米C16米D15米10将抛物线y=(x+1)2+3向右平移2个单位后得到的新抛物线的表达式为()Ay=(x+1)2+1By=(x1)2+3Cy=(x+1)2+5Dy=(x+3)2+3二、填空题(每小题3分,共24分)11如图,在中,将绕顶点顺时针旋转

4、,得到,点、分别与点、对应,边分别交边、于点、,如果点是边的中点,那么_.12我国古代数学著作九章算术中记载了一个问题:“今有邑方不知大小,各开中门,出北门三十步有木,出西门七百五十步见木,问:邑方几何?”其大意是:如图,一座正方形城池,A为北门中点,从点A往正北方向走30步到B处有一树木,C为西门中点,从点C往正西方向走750步到D处正好看到B处的树木,则正方形城池的边长为_步13如下图,圆柱形排水管水平放置,已知截面中有水部分最深为,排水管的截面半径为,则水面宽是_14设x1、x2是方程xx1=0的两个实数根,则x1+x2=_15抛物线y(x2)2的顶点坐标是_16把两块同样大小的含角的三

5、角板的直角重合并按图1方式放置,点是两块三角板的边与的交点,将三角板绕点按顺时针方向旋转到图2的位置,若,则点所走过的路程是_17计算:cos245-tan30sin60=_18已知实数m,n满足,且,则= 三、解答题(共66分)19(10分)已知a,b,求20(6分)中华人民共和国城市道路路内停车泊位设置规范规定:米以上的,可在两侧设停车泊位,路幅宽米到米的,可在单侧设停车泊位,路幅宽米以下的,不能设停车泊位;米,车位宽米;米.根据上述的规定,在不考虑车位间隔线和车道间隔线的宽度的情况下,如果在一条路幅宽为米的双向通行车道设置同一种排列方式的小型停车泊位,请回答下列问题:(1)可在该道路两侧

6、设置停车泊位的排列方式为 ;(2)如果这段道路长米,那么在道路两侧最多可以设置停车泊位 个.(参考数据:,)21(6分)已知抛物线经过点,与轴交于点(1)求这条抛物线的解析式;(2)如图,点是第三象限内抛物线上的一个动点,求四边形面积的最大值22(8分)如图,正三角形ABC内接于O,若AB4cm,求O的直径及正三角形ABC的面积23(8分)如图,在ABC中,AB=AC,以AB为直径作O ,交BC于点D,交CA的延长线于点E,连接AD,DE(1)求证:D是BC的中点(2)若DE=3, AD1,求O的半径24(8分)某校九年级学生某科目学期总评成绩是由完成作业、单元检测、期末考试三项成绩构成的,如

7、果学期总评成绩80分以上(含80分),则评定为“优秀”,下表是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075_若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定学期总评成绩(1)请计算小张的学期总评成绩为多少分?(2)小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?25(10分)在正方形中,点是直线上动点,以为边作正方形,所在直线与所在直线交于点,连接(1)如图1,当点在边上时,延长交于点,与交于点,连接求证:;若,求的值;(2)当正方形的边长为4,时,请直接写出的长26(10分)如图,在平面直角坐标系中,抛物线与轴交于点和点,与轴交

8、于点,且点在第四象限且在抛物线上(1)如(图1),当四边形面积最大时,在线段上找一点,使得最小,并求出此时点的坐标及的最小值;(2)如(图2),将沿轴向右平移2单位长度得到,再将绕点逆时针旋转度得到,且使经过、的直线与直线平行(其中),直线与抛物线交于、两点,点在抛物线上在线段上是否存在点,使以点、为顶点的四边形为平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由参考答案一、选择题(每小题3分,共30分)1、A【分析】通过计算判别式的值可判断抛物线与轴的交点个数【详解】由二次函数,知抛物线与轴有二个公共点故选:A【点睛】本题考查了二次函数与一元二次方程之间的关系,抛物线与轴的交点个数

9、取决于的值2、B【分析】连接BO,由可得,则,由圆周角定理,得,即可得到答案.【详解】解:如图,连接BO,则,;故选:B.【点睛】本题考查了垂径定理,以及圆周角定理,解题的关键是正确作出辅助线,得到.3、D【解析】利用一元二次方程的定义判断即可【详解】A、3不是整式方程,不符合题意;B、方程整理得:2x+10,是一元一次方程,不符合题意;C、ax2+bx+c0没有条件a0,不一定是一元二次方程,不符合题意;D、3(x+1)22(x+1)是一元二次方程,符合题意,故选:D【点睛】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键4、C【分析】根据轴对称图形和中心对称图形的定义

10、逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A. 既是中心对称图形,也是轴对称图形,故不符合题意;B. 既是中心对称图形,也是轴对称图形,故不符合题意;C.是中心对称图形,但不是轴对称图形,故符合题意;D.不是中心对称图形,是轴对称图形,故不符合题意;故选C.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.5、A【分析】设与墙垂直的一边长为xm,则与墙平行的一边长为(26-2x)m,根

11、据题意可列出方程【详解】解:设与墙垂直的一边长为xm,则与墙平行的一边长为(26-2x)m,根据题意得:x(26-2x)=1故选A【点睛】本题考核知识点:列一元二次方程解应用题.解题关键点:找出相等关系,列方程6、B【解析】根据题目中二次函数的顶点式,可以直接写出该函数的顶点坐标【详解】二次函数y=(x+2)2+6,该函数的顶点坐标为(2,6),故选:B【点睛】本题主要考查了二次函数的性质,关键是熟记:抛物线的顶点坐标是,对称轴是7、B【解析】由题意根据轴对称图形与中心对称图形的概念进行依次判断即可【详解】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形

12、,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、不是轴对称图形,也不是中心对称图形,故本选项错误故选:B【点睛】本题考查中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合8、D【分析】由向上和向下的次数可求出向下的频率,根据大量重复试验下,随机事件发生的频率可以作为概率的估计值即可得答案【详解】凸面向上的次数为420次,凸面向下的次数为580次,凸面向下的频率为580(420+580)=0.58,大量重复试验下,随机事件发生的频率可以作为概率的估计值,估计抛掷这枚啤酒瓶盖落地

13、后凸面向下的概率约为0.58,故选:D【点睛】本题考查利用频率估计概率,熟练掌握大量重复试验下,随机事件发生的频率可以作为概率的估计值是解题关键9、B【分析】设此时高为18米的旗杆的影长为xm,利用“在同一时刻物高与影长的比相等”列出比例式,进而即可求解【详解】设此时高为18米的旗杆的影长为xm,根据题意得:=,解得:x=30,此时高为18米的旗杆的影长为30m故选:B【点睛】本题考查了相似三角形的应用,掌握相似三角形的性质和“在同一时刻物高与影长的比相等”的原理,是解题的关键10、B【解析】解:将抛物线y=(x+1)2+1向右平移2个单位,新抛物线的表达式为y=(x+12)2+1=(x1)2

14、+1故选B二、填空题(每小题3分,共24分)11、【分析】设AC3x,AB5x,可求BC4x,由旋转的性质可得CB1BC4x,A1B15x,ACBA1CB1,由题意可证CEB1DEB,可得,即可表示出BD,DE,再得到A1D的长,故可求解【详解】ACB90,sin B,设AC3x,AB5x,BC4x,将ABC绕顶点C顺时针旋转,得到A1B1C,CB1BC4x,A1B15x,ACBA1CB1,点E是A1B1的中点,CEA1B12.5xB1E=A1E,BEBCCE1.5x,BB1,CEB1BEDCEB1DEBBD=,DE=1.5x,A1D= A1E- DE=x,则x: =故答案为:.【点睛】本题考

15、查了旋转的性质,解直角三角形,相似三角形的判定和性质,证CEB1DEB是本题的关键12、1【分析】设正方形城池的边长为步, 根据比例性质求.【详解】解:设正方形城池的边长为步,即正方形城池的边长为1步故答案为1【点睛】本题考查了相似三角形的应用:构建三角形相似,利用相似比计算对应的线段长13、【分析】利用垂径定理构建直角三角形,然后利用勾股定理即可得解.【详解】设排水管最低点为C,连接OC交AB于D,连接OB,如图所示:OC=OB=10,CD=5OD=5OCAB故答案为:.【点睛】此题主要考查垂径定理的实际应用,熟练掌握,即可解题.14、1【分析】观察方程可知,方程有两个不相等的实数根,由根与

16、系数关系直接求解.【详解】解:方程中,=50,方程有两个不相等的实数根, =1.故答案为:1.【点睛】本题考查了一元二次方程的根与系数关系.关键是先判断方程的根的情况,利用根与系数关系求解.15、(2,0)【分析】已知条件的解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【详解】解:抛物线解析式为y(x2)2,二次函数图象的顶点坐标是(2,0)故答案为(2,0)【点睛】本题的考点是二次函数的性质.方法是根据顶点式的坐标特点写出答案.16、【分析】两块三角板的边与的交点所走过的路程,需分类讨论,由图的点运动到图的点,由图的点运动到图的点,总路程为,分别求解即可【详解】如图,两块三

17、角板的边与的交点所走过的路程,分两步走:(1)由图的点运动到图的点,此时:ACDE,点C到直线DE的距离最短,所以CF最短,则PF最长,根据题意,在 中,;(2)由图的点运动到图的点,过G作GHDC于H,如下图,且GHDC, 是等腰直角三角形,设,则,解得:,即,点所走过的路程:,故答案为:【点睛】本题是一道需要把旋转角的概念和解直角三角形相结合求解的综合题,考查学生综合运用数学知识的能力正确确定点所走过的路程是解答本题的关键17、0【分析】直接利用特殊角的三角函数值代入进而得出答案【详解】= .故答案为0.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键18、【解析】试题

18、分析:由时,得到m,n是方程的两个不等的根,根据根与系数的关系进行求解试题解析:时,则m,n是方程3x26x5=0的两个不相等的根,原式=,故答案为考点:根与系数的关系三、解答题(共66分)19、1【分析】先对已知a、b进行分母有理化,进而求得ab、a-b的值,再对进行适当变形即可求出式子的值【详解】解:a,b,a+2,b2,ab1,ab4,1【点睛】本题主要考查了二次根式的化简求值、分母有理化,解答本题的关键是明确二次根式化简求值的方法和分母有理化的方法20、(1)平行式或倾斜式(2)1【分析】(1)对应三种方式分别验证是否合适即可;(2)分别按照第(1)问选出来的排列方式计算停车泊位,进行

19、比较取较大者即可.【详解】(1)除去两车道之后道路宽 因为要在道路两旁设置停车泊位,所以每个停车泊位的宽必须小于等于3m,所以方式3垂直式不合适,排除;方式1平行式满足要求,对于房市,它的宽度为,要满足要求,必须有,即,所以当时,方式2倾斜式也能满足要求.故答案为平行式或倾斜式(2)若选择平行式,则可设置停车泊位的数量为(个)若选择倾斜式,每个停车泊位的宽度为 ,要使停车泊位尽可能多,就要使宽度尽可能小,所以取,此时每个停车位的宽度为 ,所以可设置停车泊位的数量为(个)故答案为1【点睛】本题主要考查理解能力以及锐角三角函数的应用,掌握锐角三角函数的定义是解题的关键.21、(1);(2)1【分析

20、】(1)将,代入抛物线中求解即可;(2)利用分割法将四边形面积分成,假设P点坐标,四边形面积可表示为二次函数解析式,再利用二次函数的图像和性质求得最值【详解】解:(1)抛物线经过点,解得,抛物线的解析式为,(2)如图,连接,设点,四边形的面积为,由题意得点,开口向下,有最大值,当时,四边形的面积最大,最大值为1【点睛】本题考查了待定系数法求二次函数解析式、分割法求面积、二次函数的图象及性质的应用,比较综合,是中考中的常考题型22、O的直径为8cm,正三角形ABC的面积为12cm2【分析】根据圆内接正三角形的性质即可求解【详解】解:如图所示:连接CO并延长与AB交于点D,连接AO,点O是正三角形

21、ABC的外心,CDAB,OAD30,设ODx,则, 根据勾股定理,得,解得x4,则x2,半径OA4cm,直径为8cmCD3x6,.答:O的直径为8cm;正三角形ABC的面积为12cm2【点睛】本题考查了三角形的外接圆与外心、等边三角形的性质,解决本题的关键是掌握圆内接正三角形的性质23、(1)证明见解析;(2)【分析】(1)根据圆周角定理、等腰三角形的三线合一的性质即可证得结论;(2)根据圆周角定理及等腰三角形的判定得到DE=BD=3,再根据勾股定理求出AB,即可得到半径的长.【详解】(1)AB是O直径ADB90,在ABC中,AB=AC,DB=DC,即点D是BC的中点;(2)AB=AC, B=

22、C, 又B=E,C=E,DE=DC,DC=BD, DE=BD=3,AD=1,又ADB90,AB=,O 的半径.【点睛】此题考查圆周角定理,等腰三角形的三线合一的性质及等角对等边的判定,勾股定理.24、(1)小张的期末评价成绩为81分(2)最少考85分才能达到优秀【分析】(1)直接利用加权平均数的定义求解可得;(2)设小王期末考试成绩为x分,根据加权平均数的定义列出不等式求出最小整数解即可【详解】解:(1)小张的期末评价成绩为81(分);答:小张的期末评价成绩为81分(2)设小王期末考试成绩为x分,根据题意,得:,解得x84,小王在期末(期末成绩为整数)应该最少考85分才能达到优秀【点睛】本题主

23、要考查加权平均数,解题的关键是掌握加权平均数的定义25、(1)证明见解析;(2)或【分析】(1)通过正方形的性质和等量代换可得到,从而可用SAS证明,利用全等的性质即可得出;(2)先证明 ,则有 ,进而可证明 ,得到,再利用得出 ,作 交EH于点P,则,利用相似三角形的性质得出,则问题可解;(3)设,则 ,表示出EH,然后利用解出x的值,进而可求EH的长度;当E在BA的延长线上时,画出图形,用同样的方法即可求EH的长度【详解】(1)证明:四边形ABCD,DEFG都是正方形 在和中, 四边形DEFG是正方形 在和中, 在和中, 作 交EH于点P,则 (3)当点E在AB边上时,设,则 解得 当E在BA的延长线上时,如下图四

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论