同类项教学设计_第1页
同类项教学设计_第2页
同类项教学设计_第3页
同类项教学设计_第4页
同类项教学设计_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2.3同类项 主备人 孙忠瑞定位导入【学习目标】:1理解同类项的概念,在具体情景中,认识同类项。2初步体会数学与人类生活的密切联系。【学习重点】:理解同类项的概念。【学习难点】:根据同类项的概念在多项式中找同类项。知识归纳:1. 同类项的概念: 2.注意:两个相同:字母相同;相同字母的指数相等。 两个无关:与系数无关;与字母顺序无关。 所有的常数项都是同类项。两个项虽然所含字母相同,但相同字母的指数不全相同就不是同类项。精讲释一知识链接1运用有理数的运算律计算:(1)1002+2522=_,(2)100(-2)+252(-2)=_,(3)100t+252t=_,思路点拨:根据逆用乘法对加法的分

2、配律可得。2.请根据上面得到结论的方法探究下面各式的结果:(1)100t252t=( )t(2)3x2 2 x2 = ( ) x2(3)3ab2 4 ab2 = ( ) ab2 上述运算有什么共同特点,你能从中得出什么规律?二自主学习同类项的定义:1.观察:3x2 和 2 x2 ; 3ab2 与 4 ab2 在结构上有哪些相同点和不同点?2.归纳:_叫做同类项_也是同类项。如3和-5是同类项课堂检测:1、判断下列说法是否正确,正确地在括号内打“”,错误的打“”。(1)3x与3mx是同类项。 ( ) (2)2ab与5ab是同类项。 ( )(3)3x2y与yx2是同类项。 ( ) (4)5ab2与

3、2ab2c是同类项。 ( )(5)23与32是同类项。 ( )2、下列各组式子中,是同类项的是( )A、与 B、与 C、与 D、与3、在下列各组式子中,不是同类项的一组是( )A、 2 ,5 B、 0.5xy2, 3x2y C、 3t,200t D、 ab2,b24、已知xmy2与5ynx3是同类项,则m= ,n= 。5、指出下列多项式中的同类项:(1)3x2y13y2x5; (2)3x2y2xy2xy2yx2;6、游戏:规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项。要求出题同学尽可能使自己的题目与众不同。请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质

4、特征,透彻理解同类项的概念。 巩固提高:1、若和是同类项,则m=_,n=_。2、若把(st)、(st)分别看作一个整体,指出下面式子中的同类项。(1)(st)(st)(st)(st); (2)2(st)3(st)25(st)8(st)2(st)。3、观察下列一串单项式的特点: , , , , ,(1)按此规律写出第6个单项式.(2)试猜想第n个单项式为多少?它的系数和次数分别是多少? 北海中学七年级数学备课组教学案 31 从算式到方程主备人 孙忠瑞定位导入教学目标1使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;2培养学生观察能力,提高他们分析问题和解决

5、问题的能力;3使学生初步养成正确思考问题的良好习惯教学重点和难点 一元一次方程解简单的应用题的方法和步骤知识归纳精讲释疑教学目标课堂教学过程设计 一、从学生原有的认知结构提出问题在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?为了回答上述这几个问题,我们来看下面这个例题某数的3倍减2等于某数与4的和,求某数(首先,用算术方法解,由学生回答,教师板书)解法1:(4+2)(3-1)=3 答:某数为3 (其次,用代数方法来解,教师引导,学生口述完成)解法2:

6、设某数为x,则有3x-2=x+4解之,得x=3答:某数为3 纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一 我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程 本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤 二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤例2某面粉仓库存放的面粉运出15后,还剩余42500千克,这

7、个仓库原来有多少面粉? 师生共同分析: 1本题中给出的已知量和未知量各是什么?2已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)3若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程? 上述分析过程可列表如下: 解:设原来有x千克面粉,那么运出了15x千克,由题意,得x-15x=42500,所以x=50000 答:原来有50000千克面粉 此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)教师应指出:(1)这两种相等关系的表达形式与“原

8、来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程; (2)例2的解方程过程较为简捷,同学应注意模仿依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:(1)仔细审题,透彻理解题意即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;(2)根据题意找出能够表示应用题全部含义的一个相等关系(这是关键一步);(3)根据相等关系,正确列出方程即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不

9、能将一个条件重复利用等;(4)求出所列方程的解; (5)检验后明确地、完整地写出答案这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义例3(投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误并严格规范书写格式)解:设第一小组有x个学生,依题意,得3x+9=5x-(5-4),解这个方程:2x=10,所以x=5其苹果数为35

10、+9=24答:第一小组有5名同学,共摘苹果24个学生板演后,引导学生探讨此题是否可有其他解法,并列出方程(设第一小组共摘了x个苹果,则依题意,得)三、课堂练习1买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?2我国城乡居民1988年末的储蓄存款达到3802亿元,比1978年末的储蓄存款的18倍还多4亿元求1978年末的储蓄存款3某工厂女工人占全厂总人数的35,男工比女工多252人,求全厂总人数四、师生共同小结首先,让学生回答如下问题:1本节课学习了哪些内容? 2列一元一次方程解应用题的方法和步骤是什么? 3在运用上述方法和步骤时应注意什么? 依据学生的回答情况,教师总结如下: (1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案其中第三步是关键; (2)以上步骤同学应在理解的基础上记忆 五、作业1买3千克苹果,付出10元,找回3角4分问每千克苹果多少钱?2用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?3某厂去

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论