版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷
2、和答题卡一并交回。一、选择题(每小题3分,共30分)1下列命题是真命题的是()A如果|a|b|,那么abB平行四边形对角线相等C两直线平行,同旁内角互补D如果ab,那么a2b22在一个不透明的袋子中,装有红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同若小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在和,则该袋子中的白色球可能有()A6个B16个C18个D24个3如图,在由边长为1的小正方形组成的网格中,点,都在格点上,点在的延长线上,以为圆心,为半径画弧,交的延长线于点,且弧经过点,则扇形的面积为( )ABCD4二次函数中与的部分对应值如下表所示,则下列结论错误的是( )A
3、B当时,的值随值的增大而减小C当时,D方程有两个不相等的实数根5反比例函数图象的一支如图所示,的面积为2,则该函数的解析式是()ABCD6如图,点,在双曲线上,且若的面积为,则( )A7BCD7已知关于x的分式方程无解,关于y的不等式组的整数解之和恰好为10,则符合条件的所有m的和为( )ABCD8如图,已知在ABC中,DEBC,DE2,则BC的长是()A3B4C5D69用配方法解方程时,可将方程变形为( )ABCD10如图,正方形的边长为,动点,同时从点出发,在正方形的边上,分别按,的方向,都以的速度运动,到达点运动终止,连接,设运动时间为,的面积为,则下列图象中能大致表示与的函数关系的是(
4、)ABCD二、填空题(每小题3分,共24分)11某一时刻,一棵树高15m,影长为18m此时,高为50m的旗杆的影长为_m12正八边形的每个外角的度数和是_13如图,抛物线与轴的负半轴交于点,与轴交于点,连接,点分别是直线与抛物线上的点,若点围成的四边形是平行四边形,则点的坐标为_. 14小华在距离路灯6米的地方,发现自己在地面上的影长是2米,若小华的身高为1.6米,那么路灯离地面的高度是_米152019年元旦前,无为米蒂广场开业期间,某品牌服装店举行购物酬宾抽奖活动,抽奖箱内共有15张奖券,4张面值100元,5张面值200元,6张面值300元,小明从中任抽2张,则中奖总值至少300元的概率为_
5、16如图,物理课上张明做小孔成像试验,已知蜡烛与成像板之间的距离为24cm,要使烛焰的像AB是烛焰AB的2倍,则蜡烛与成像板之间的小孔纸板应放在离蜡烛_cm的地方17若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是_18如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点如图,已知梯形ABCD是等距四边形,ABCD,点B是等距点若BC=10,cosA=,则CD的长等于_三、解答题(共66分)19(10分)如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直
6、线(1)求抛物线的解析式;(2)M是线段AB上的任意一点,当MBC为等腰三角形时,求M点的坐标20(6分)如图,在ABC中,C=90,AC=8cm,BC=6cm 点M由点B出发沿BA方向向点A匀速运动,同时点N由点A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s 连接MN,设运动时间为t(s)0t4,解答下列问题: 设AMN的面积为S,求S与t之间的函数关系式,并求出S的最大值;如图,连接MC,将MNC沿NC翻折,得到四边形MNPC,当四边形MNPC为菱形时,求t的值;当t的值为 ,AMN是等腰三角形21(6分)如图,AB是O的直径,弦EFAB于点C,点D是AB延长线上一点,A30,D
7、30(1)求证:FD是O的切线;(2)取BE的中点M,连接MF,若O的半径为2,求MF的长22(8分)边长为2的正方形在平面直角坐标系中的位置如图所示,点是边的中点,连接,点在第一象限,且,.以直线为对称轴的抛物线过,两点.(1)求抛物线的解析式;(2)点从点出发,沿射线每秒1个单位长度的速度运动,运动时间为秒.过点作于点,当为何值时,以点,为顶点的三角形与相似?(3)点为直线上一动点,点为抛物线上一动点,是否存在点,使得以点,为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.23(8分)如图1,已知中,它在平面直角坐标系中位置如图所示,点在轴的负半轴上(
8、点在点的右侧),顶点在第二象限,将沿所在的直线翻折,点落在点位置(1)若点坐标为时,求点的坐标;(2)若点和点在同一个反比例函数的图象上,求点坐标;(3)如图2,将四边形向左平移,平移后的四边形记作四边形,过点的反比例函数的图象与的延长线交于点,则在平移过程中,是否存在这样的,使得以点为顶点的三角形是直角三角形且点在同一条直线上?若存在,求出的值;若不存在,请说明理由24(8分)已知:如图,在ABC中,ADBC于点D,E是AD的中点,连接CE并延长交边AB于点F,AC13,BC8,cosACB(1)求tanDCE的值;(2)求的值25(10分)如图,抛物线与轴交于、两点,与轴交于点,且,(1)
9、求抛物线的解析式;(2)已知抛物线上点的横坐标为,在抛物线的对称轴上是否存在点,使得的周长最小?若存在,求出点的坐标;若不存在,请说明理由26(10分)先化简,再求值:,其中,参考答案一、选择题(每小题3分,共30分)1、C【解析】根据绝对值的定义,平行线的性质,平行四边形的性质,不等式的性质判断即可【详解】A、如果|a|b|,那么ab,故错误;B、平行四边形对角线不一定相等,故错误;C、两直线平行,同旁内角互补,故正确;D、如果a1b2,那么a2b2,故错误;故选C【点睛】本题考查了绝对值,不等式的性质,平行线的性质,平行四边形的性质,熟练掌握各性质定理是解题的关键2、B【分析】先由频率之和
10、为1计算出白球的频率,再由数据总数频率=频数计算白球的个数,即可求出答案【详解】解:摸到红色球、黑色球的频率稳定在0.15和0.45,摸到白球的频率为1-0.15-0.45=0.4,故口袋中白色球的个数可能是400.4=16个故选:B【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比3、B【分析】连接AC,根据网格的特点求出r=AC的长度,再得到扇形的圆心角度数,根据扇形面积公式即可求解.【详解】连接AC,则r=AC=扇形的圆心角度数为BAD=45,扇形的面积=故选B.【点睛】此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形
11、面积公式.4、B【分析】根据表中各对应点的特征和抛物线的对称性求出抛物线的解析式即可判断.得出c=3,抛物线的对称轴为x=1.5,顶点坐标为(1,5),抛物线开口向下,【详解】解:由题意得出:,解得,抛物线的解析式为:抛物线的对称轴为x=1.5,顶点坐标为(1,5),抛物线开口向下a=-10,选项A正确;当时,的值先随值的增大而增大,后随随值的增大而增大,选项B错误;当时,的值先随值的增大而增大,因此当x0时,选项C正确;原方程可化为,有两个不相等的实数根,选项D正确.故答案为B.【点睛】本题考查的知识点是二次函数的图象与性质,根据题目得出抛物线解析式是解题的关键.5、D【分析】根据反比例函数
12、系数k的几何意义, 由POM的面积为2, 可知|k|=2, 再结合图象所在的象限, 确定k的值, 则函数的解析式即可求出.【详解】解:POM的面积为2,S=|k|=2,又图象在第四象限,k0,k=-4,反比例函数的解析式为:.故选D.【点睛】本题考查了反比例函数的比例系数k与其图象上的点与原点所连的线段、 坐标轴、 向坐标轴作垂线所围成的直角三角形面积S的关系, 即S= |k|.6、A【分析】过点A作ACx轴,过点B作BDx轴,垂足分别为点C,点D,根据待定系数法求出k的值,设点,利用AOB的面积=梯形ACDB的面积+AOC的面积-BOD的面积=梯形ACDB的面积进行求解即可【详解】如图所示,
13、过点A作ACx轴,过点B作BDx轴,垂足分别为点C,点D,由题意知,设点,AOB的面积=梯形ACDB的面积+AOC的面积-BOD的面积=梯形ACDB的面积,解得,或(舍去),经检验,是方程的解,故选A【点睛】本题考查了利用待定系数法求反比例函数的表达式,反比例函数系数k的几何意义,用点A的坐标表示出AOB的面积是解题的关键7、C【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程无解确定出m的值,不等式组整理后表示出解集,由整数解之和恰好为10确定出m的范围,进而求出符合条件的所有m的和即可【详解】解:,分式方程去分母得:mx+2x-12=3x-9,移项合并得:(m-1)x=3
14、,当m-1=0,即m=1时,方程无解;当m-10,即m1时,解得:x=,由分式方程无解,得到:或,解得:m=2或m=,不等式组整理得:,即0 x,由整数解之和恰好为10,得到整数解为0,1,2,3,4,可得45,即,则符合题意m的值为1和,之和为故选:C【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键8、D【分析】由DEBC可证ADEABC,得到,即可求BC的长【详解】DEBC,ADEABC,,DE=2,BC1故选D【点睛】本题主要考查了相似三角形的判定与性质,解决本题的关键是要熟练掌握相似三角形的判定和性质.9、D【分析】配方法一般步骤:将常数项移
15、到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.【详解】解:故选D.【点睛】本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.10、A【分析】根据题意结合图形,分情况讨论:时,根据,列出函数关系式,从而得到函数图象;时,根据列出函数关系式,从而得到函数图象,再结合四个选项即可得解【详解】当时,正方形的边长为,;当时,所以,与之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有A选项图象符合,故选A【点睛】本题考查了动点问题的函数图象,根据题意,分别求出两个时间段的函数关系式是解题的关键二、填空题(每小题3分,共24分)11、1【分析】设旗杆的影长为xm,然后利用同一
16、时刻物高与影长成正比例列方程求解即可【详解】解:设旗杆的影长BE为xm,如图:ABCDABEDCE,由题意知AB=50,CD=15,CE=18,即,解得x1,经检验,x=1是原方程的解,即高为50m的旗杆的影长为1m故答案为:1【点睛】此题主要考查比例的性质,解题的关键是熟知同一时刻物高与影长成正比例.12、360【分析】根据题意利用正多边形的外角和等于360度,进行分析计算即可得出答案【详解】解:因为任何一个多边形的外角和都是360,所以正八边形的每个外角的度数和是360故答案为:360【点睛】本题主要考查多边形的外角和定理,熟练掌握任何一个多边形的外角和都是360是解题的关键13、或或【分
17、析】根据二次函数与x轴的负半轴交于点,与轴交于点.直接令x=0和y=0求出A,B的坐标.再根据平行四边形的性质分情况求出点E的坐标.【详解】由抛物线的表达式求得点的坐标分别为. 由题意知当为平行四边形的边时,且,线段可由线段平移得到. 点在直线上,当点的对应点为时,如图,需先将向左平移1个单位长度,此时点的对应点的横坐标为,将代入,得,. 当点A的对应点为时,同理,先将向右平移2个单位长度,可得点的对应点的横坐标为2,将代入得,当为平行四边形的对角线时,可知的中点坐标为,在直线上,根据对称性可知的横坐标为,将代入得,. 综上所述,点的坐标为或或.【点睛】本题是二次函数的综合题,主要考查了特殊点
18、的坐标的确定,平行四边形的性质,解本题的关键是分情况解决问题的思想14、6.1【解析】解:设路灯离地面的高度为x米,根据题意得:,解得:x=6.1故答案为6.115、【分析】有15张奖券中抽取2张的所有等可能结果数为种,其中中奖总值低于300元的有种知中奖总值至少300元的结果数为种,再根据概率公式求解可得【详解】解:从15张奖券中抽取2张的所有等可能结果数为1514210种,其中中奖总值低于300元的有4312种,则中奖总值至少300元的结果数为21012198种,所以中奖总值至少300元的概率为,故答案为:【点睛】本题主要考查列表法与树状图法,解题的关键根据题意得出所有等可能的结果数和符合
19、条件的结果数16、8【解析】设蜡烛距小孔cm,则小孔距成像板cm,由题意可知:ABAB,ABOABO,解得:(cm).即蜡烛与成像板之间的小孔相距8cm.点睛:相似三角形对应边上的高之比等于相似比.17、15【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=523=15【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键.18、16【解析】如图作BMAD于M,DEAB于E,
20、BFCD于F易知四边形BEDF是矩形,理由面积法求出DE,再利用等腰三角形的性质,求出DF即可解决问题【详解】连接BD,过点B分别作BMAD于点M,BNDC于点N,梯形ABCD是等距四边形,点B是等距点,AB=BD=BC=10,= ,AM=,BM=3,BMAD,AD=2AM=2,AB/CD,SABD=,BN=6,BNDC,DN=8,CD=2DN=16,故答案为16.三、解答题(共66分)19、(1)(2)M点坐标为(0,0)或【解析】试题分析:(1)首先将抛物线的解析式设成顶点式,然后将A、C两点坐标代入进行计算;(2)首先求出点B的坐标,然后分三种情况进行计算.试题解析:(1)、依题意,设抛
21、物线的解析式为y=a+k.由A(2,0),C(0,3)得解得抛物线的解析式为y=.(2)、当y=0时,有=0. 解得x1=2,x2=-3.B(-3,0).MBC为等腰三角形,则当BC=CM时,M在线段BA的延长线上,不符合题意.即此时点M不存在;当CM=BM时,M在线段AB上,M点在原点O上.即M点坐标为(0,0);当BC=BM时,在RtBOC中,BO=CO=3,由勾股定理得BC=3,BM=3.M点坐标为(3-3,0).综上所述,M点的坐标为(0,0)或(3-3,0).考点:二次函数的综合应用.20、(1), ;(2)t=;(3)或或【分析】(1)如图过点M作MDAC于点D,利用相似三角形的性
22、质求出MD即可解决问题;(2)连接PM,交AC于D,当四边形MNPC为菱形时,ND=,即可用t表示AD,再结合第一问的相似可以用另外一个含t式子表示AD,列方程计算即可;(3)分别用t表示出AP、AQ、PQ,再分三种情况讨论:当AQAP当PQAQ当PQAP,再分别计算即可【详解】解:过点M作MDAC于点D,;AB=10cmBM=AN=2tAM=10-2tADMACB即又S的最大值是;连接PM,交AC于D,四边形MNPC是菱形,则MPNC,ND=CDCN=8-2tND=4-tAD=2t+4-t=t+4由知AD=t+4t=;(3)由(1)知,PEt+3,与(2)同理得:QEAEAQt+4PQ,在A
23、PQ中,当AQAP,即t5t时,解得:t1;当PQAQ,即t时,解得:t2,t35;当PQAP,即5t时,解得:t40,t5;0t4,t35,t40不合题意,舍去,当t为s或s或s时,APQ是等腰三角形【点睛】此题主要考查了相似形综合,用到的知识点是相似三角形的判定与性质、勾股定理、三角形的面积公式以及二次函数的最值问题,关键是根据题意做出辅助线,利用数形结合思想进行解答21、(1)见解析;(2)MF.【分析】(1)如图,连接OE,OF,由垂径定理可知,根据圆周角定理可求出DOF=60,根据三角形内角和定理可得OFD=90,即可得FD为O的切线;(2)如图,连接OM,由中位线的性质可得OM/A
24、E,根据平行线的性质可得MOBA30,根据垂径定理可得OMBE,根据含30角的直角三角形的性质可求出BE的长,利用勾股定理可求出OM的长,根据三角形内角和可得DOF=60,即可求出MOF=90,利用勾股定理求出MF的长即可.【详解】(1)如图,连接OE,OF,EFAB,AB是O的直径,DOFDOE,DOE2A,A30,DOF60,D30,OFD90,OFFDFD为O的切线.(2)如图,连接OM,MF,O是AB中点,M是BE中点,OMAEMOBA30OM过圆心,M是BE中点,OMBEMB=OB=1,OM=,OFD=90,D=30,DOF60,MOFDOF+MOB=90,MF【点睛】本题考查切线的
25、判定与性质、垂径定理、三角形中位线的性质及含30角的直角三角形的性质,熟练掌握切线的性质是解题关键.22、(1);(2)或时,以点,为顶点的三角形与相似;(3)存在,四边形是平行四边形时,;四边形是平行四边形时,;四边形是平行四边形时,【分析】(1)根据正方形的性质,可得OAOC,AOCDGE,根据余角的性质,可得OCDGDE,根据全等三角形的判定与性质,可得EGOD1,DGOC2,根据待定系数法,可得函数解析式;(2)分类讨论:若DFPCOD,根据相似三角形的性质,可得PDFDCO,根据平行线的判定与性质,可得PDOOCPAOC90,根据矩形的判定与性质,可得PC的长;若PFDCOD,根据相
26、似三角形的性质,可得DPFDCO,根据等腰三角形的判定与性质,可得DF于CD的关系,根据相似三角形的相似比,可得PC的长;(3)分类讨论:当四边形是平行四边形时,四边形是平行四边形时,四边形是平行四边形时,根据一组对边平行且相等的四边形式平行四边,可得答案【详解】解:(1)过点作轴于点.四边形是边长为2的正方形,是的中点,.,.,.在和中,.点的坐标为.抛物线的对称轴为直线即直线,可设抛物线的解析式为,将、点的坐标代入解析式,得,解得.抛物线的解析式为;(2)若,则,四边形是矩形,;若,则,.,.,.,综上所述:或时,以点,为顶点的三角形与相似:(3)存在,若以DE为平行四边形的对角线,如图2
27、,此时,N点就是抛物线的顶点(2,),由N、E两点坐标可求得直线NE的解析式为:yx;DMEN,设DM的解析式为:yxb,将D(1,0)代入可求得b,DM的解析式为:yx,令x2,则y,M(2,);过点C作CMDE交抛物线对称轴于点M,连接ME,如图3,CMDE,DECD,CMCD,OCCB,OCDBCM,在OCD和BCM中,OCDBCM(ASA),CMCDDE,BMOD1,CDEM是平行四边形,即N点与C占重合,N(0,2),M(2,3);N点在抛物线对称轴右侧,MNDE,如图4,作NGBA于点G,延长DM交BN于点H,MNED是平行四边形,MDEMNE,ENHDHB,BNDF,ADHDHB
28、ENH,MNBEDF,在BMN和FED中BMNFED(AAS),BMEF1,BNDF2,M(2,1),N(4,2);综上所述,四边形是平行四边形时,;四边形是平行四边形时,;四边形是平行四边形时,.【点睛】本题考查了二次函数综合题,(1)利用了正方形的性质,余角的性质,全等三角形的判定与性质,待定系数法求函数解析式;(2)利用了相似三角形的性质,矩形的判定,分类讨论时解题关键;(3)利用了平行四边形的判定,分类讨论时解题关键23、(1);(2);(3)存在,或【分析】(1)过点作轴于点,利用三角函数值可得出,再根据翻折的性质可得出,再解,得出,最后结合点C的坐标即可得出答案;(2)设点坐标为(),则点的坐标是,利用(1)得出的结果作为已知条件,可得出点D的坐标为,再结合反比例函数求解即可;(3)首先存在这样的k值,分和两种情况讨论分析即可【详解】解:(1)如图,过点作轴于点, 由题意可知,.在中,.点坐标为,.点的坐标是(2)设点坐标为(),则点的坐标是,由(1)可知:点的坐标是点和点在同一个反比例函数的图象上,.解得.点坐标为(3)存在这样
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 61300-3-50:2025 FR Fibre optic interconnecting devices and passive components - Basic test and measurement procedures - Part 3-50: Examinations and measurements - Crosst
- 【正版授权】 IEC 61811-1:2015/AMD1:2025 EN Amendment 1 - Electromechanical telecom elementary relays of assessed quality - Part 1: Generic specification and blank detail specification
- 可爱风中小学开学安全第一课
- 制药厂安全工程课件
- 制度安全培训心得课件
- 制图基本知识课件
- 工程兵知识课件
- 燃气、电气设备检查管理制度模版(三篇)
- 运输安全生产监督检查制度
- 成本控制与优化策略在联合治疗中应用
- 视光学基础(第3版)课件 第五章 视力和视力检查
- 2025河南省公务员考试《公共基础知识》题库及答案1套
- 培训学校前台接待礼仪
- DB11∕T 695-2025 建筑工程资料管理规程
- 2025年开通新三板的试题及答案
- 2025年天津大学管理岗位集中招聘15人备考题库及完整答案详解1套
- (一诊)成都市2023级高三高中毕业班第一次诊断性检测英语试卷(含官方答案及解析)+听力材料+听力音频
- 新型城市基础设施建设数字化转型策略研究
- 形势与政策(2025秋)超星学习通章节测试答案
- 贵州大学《生物化学》2024 - 2025 学年第一学期期末试卷
- M6螺钉抛光自动送料机构的设计
评论
0/150
提交评论